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a b s t r a c t 

Players may categorize the strategies available to them. In many games there are differ- 

ent ways to categorize one’s strategies (different frames) and which ones players use has 

implications for the outcomes realized. This paper proposes a model of agents who learn 

which frames to use through reinforcement. As a case study we fit the model to exist- 

ing experimental data from coordination games. The analysis shows that the model fits 

the data well as it matches the key stylized facts. It suggests a trade-off of using coarser 

versus finer representations of the strategy set when it comes to learning. 
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1. Introduction 

To choose among different actions, a decision maker first needs a mental representation of the available options. In 

many cases some attribute(s) of the decision situation may prompt the decision maker to categorize the options available 

to her. Categorization usually implies that the agent treats objects that she has placed in the same category in the same

way ( Daskalova and Vriend, 2020; Mengel, 2012a; Mohlin, 2014 ). One important class of situations in which people may

categorize is strategic situations. In this paper we consider agents who may group their own strategies into categories. A 

frame here is a partitioning of the set of strategies available to the agent into categories, with each category containing

one or more strategies. Often multiple internal representations of the same situation or multiple frames of it are possible 
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and which one the decision maker chooses has consequences for their behavior and payoffs. Moreover, in many strategic 

situations which views of the strategy set are best depends on the views of the strategy set chosen by the other players. 

How categorizing the strategy set may matter in strategic situations is illustrated through some coordination games, 

where it may help players solve difficult equilibrium selection issues. To fix ideas consider the following matching objects 

example. There are five objects and players have to independently choose one of them. If they both choose the same one,

each player gets the same positive payoff. If they choose different ones, they get a zero payoff each. If there is nothing to

distinguish the five objects, the best the agents can do is put them all in one category and randomize uniform randomly

among them. However, imagine that one of the objects is blue, while the other four are green. If a player pays attention to

color, she may categorize the blue object separately and may form another category in which she puts all the green objects

together. If both players do so and make their subsequent choice by selecting the category blue, they would be able to

coordinate better than through pure randomization. 1 

The main goal of this paper is to improve our understanding of factors that may determine which frames of the strategy

set players choose and which outcomes emerge as a result. 2 We present a model of agents choosing among alternative

frames of a given strategy set. That is, instead of assuming that decision makers have innate cognitive limitations in viewing

the strategy set and have an ex ante fixed frame, we assume that ex ante all possible frames of the strategy set are available

to each agent. Our model is a dynamic model based on reinforcement learning. Agents learn which frames and categories 

of strategies to use based on their past experience, and they are more likely to choose those that have performed better

in the past. We study how frames that are seen as useful, as well as how the corresponding outcomes, emerge in the

process of social interaction. Taking such a dynamic perspective has several advantages. First, using reinforcement learning 

allows us to keep the model modest in terms of cognitive assumptions. One can thus expect that a relatively broad class

of more complex cognitive models may share some of its behavioral properties. Second, we present its application to pure 

coordination games. A key challenge in these games is the selection of one of a multiplicity of equilibria. Instead of making

an a priori assumption of an equilibrium refinement concept, a study of learning dynamics may help to shed some light on

the outcomes one may expect in such games. Third, as we will see in our analysis, learning dynamics may present some

additional reasons to favor one internal representation over another, reasons that may not be obvious in a static analysis. 

As a case study we fit the model to empirical data, examining how it may help us gain insights into human behavior in

the coordination games from the laboratory experiment by Bosch-Domènech and Vriend (2013) . The analysis shows that the 

model fits the data from the Bosch-Domènech and Vriend (2013) experiment well, accounting also for differences between 

experimental treatments. We gain the following insights from analyzing the model under the parameters that best fit the 

experimental data. First, agents may coordinate even without using the same view of the strategy set. Second, it is not clear

that using the finest frame (placing each strategy in a separate category) is always best; there are both advantages and

disadvantages to using such a fine representation of the strategy set when we consider learning dynamics. 

The factors that determine which internal representation of the strategy set agents learn to use and which outcomes 

emerge include the number of frames, the number of categories in each frame, the number of actions in each category, as

well as the payoffs in the underlying game. Our model highlights that both the frame and the category of strategies that

agents use matter and it helps us suggest a trade-off of using coarser versus finer representations of the strategy set when

it comes to learning. 

On the one hand, a coarse frame, i.e. one that splits the strategy set into fewer categories, makes it easier for an agent to

find and to learn to use the appropriate category of strategies (as there are fewer options to consider by trial and error and

the updating of the perceived strengths of categories will be quicker). This suggests a learning rationale for some coarseness 

of mental representation, complementary to other rationales discussed in the literature on categorization. On the other hand, 

a category that contains fewer strategies makes it more likely for agents to choose the right strategy within the category.

As we will see, as far as mental representations are concerned this means that some kind of mixture of coarseness and

fineness may be advantageous. More specifically this helps to understand why a non-equilibrium focal point may be selected 

instead of multiple Pareto-superior Nash Equilibria. The focal point alleviates the equilibrium selection problem agents face 

by prompting them to put it in a separate mental category and to thus distinguish it from other available actions. 

To further highlight the importance of frames and categories, we also compare the performance of the model with frames 

and categories in matching the experimental data with the performance of a basic reinforcement learning model without 

frames and categories, and show that while the data is well accounted for by the model with frames, it cannot be explained

by the model without frames. 

The remainder of this paper is organized as follows. Section 2 discusses some related literature. In Section 3 we introduce

the model. Section 4 presents the experiment we use as a case study. Section 5 presents the analysis of the model and

discusses the findings from the case study. Section 6 concludes. 
1 This is the simplest possible example of a much more general class of situations where many attributes may be present ( Bacharach, 1993; Bacharach 

and Bernasconi, 1997 ). In this example, it is a focal point that gives rise to alternative possible representations of the strategy set. Categorizing the strategy 

set as discussed in this paper, however, need not be focal point based. It could be prompted both by attributes that are and such that are not part of the 

formal game theoretic description of the situation, e.g. by payoffs or by labels of the actions available. 
2 As the games we consider in this paper are one-shot, we use the terms actions and strategies interchangeably throughout the paper. 

79 



V. Daskalova and N.J. Vriend Journal of Economic Behavior and Organization 191 (2021) 78–96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Related literature 

This paper sits at the intersection of several different literatures. First, on focal points and equilibrium selection in coordi- 

nation games; second, on learning in games, in particular on reinforcement learning models; and third, on categorization in 

games. We now discuss the relation to each of these literatures and to some other relevant papers on the topic of bounded

rationality in games. 

A common theme between the first strand of the literature and our paper is that the standard normal form represen-

tation of the game that is usually used to depict a one-shot strategic situation does not necessarily capture the way a

player thinks of the situation and in many cases there may be many alternative representations possible ( Bacharach, 1993;

Bacharach and Bernasconi, 1997; Bacharach and Stahl, 20 0 0; Casajus, 20 0 0; 20 01; Janssen, 20 01; Sugden, 1995; Gauthier,

1975; Schelling, 1980 ). 3 The idea in our model that players may have different frames of the strategy set is most closely

inspired by Variable Frame Theory ( Bacharach, 1993; Bacharach and Bernasconi, 1997; Bacharach and Stahl, 20 0 0 ). In our

model as in the other papers cited above the focus is on situations where some attributes are distinguished relatively nat-

urally. Given these attributes, there is a collection of possible representations of the situation, i.e. of different frames of the

strategy set. 

However, there are two main differences between this paper and the Variable Frame Theory (VFT) related literature. 

In contrast to the literature, we assume that ex ante all these naturally arising frames are available to each agent. This

differs from VFT and from Janssen (2001) , in which a player has one possible representation of the situation based on

the families of attributes she has the cognitive capacity of distinguishing. Thus, our model is not one of limited cognitive

capacities in terms of perceiving attributes. We complement the previous literature, by focusing on the question how agents 

learn to make active use of some frames while leaving others unused. 4 The second main difference is that our model is

dynamic. To deal with the issue of selecting among a multiplicity of equilibria, the approach in most of the above literature

has been to assume that the payoff dominant equilibrium in expected payoffs will be chosen. This is also known as the

Principle of Payoff Dominance, Principle of Coordination in VFT, Principle of Collective Rationality ( Sugden, 1995 ) or Principle 

of Individual Team Member Rationality ( Janssen, 2001 ). 

Instead we follow a dynamic approach based on reinforcement learning with agents being more likely to select frames 

that have been more successful in the past. 5 Rather than assuming that players coordinate on the Pareto superior equilib-

rium in expected payoffs or that they reason as a team, we study whether and in what cases the Pareto superior equilibrium

emerges as a result of the interaction. By looking at which outcomes emerge in the process of social interaction we are also

able to learn more about the advantages and disadvantages of different frames when it comes specifically to learning. 6 

In this respect our paper is related to a second literature, namely on learning models, and in particular models that are

based on some kind of reinforcement learning, examples of which include Bush and Mosteller (1951) ; Roth and Erev (1995) ;

Börgers and Sarin (1997) ; Erev and Roth (1998) ; Camerer et al. (2004) . 7 

What we add to the reinforcement learning literature is the idea of learning not actions, but frames and categories of

the strategy set. Romero and Rosokha (2019) also consider players who learn to categorize strategies through reinforcement. 

Their model and applications are complementary to ours in various ways. First, they consider categorization as an adaptive 

process, rather than as arising from natural attributes of the situation. Second, they focus on a different type of game, the

indefinitely repeated Prisoner’s Dilemma. 

A further principle underlying prediction of which action will be played in the VFT literature is what Bacharach and

Bernasconi (1997) call Symmetry Disqualification, and Janssen (2001) refers to as the Principle of Insufficient Reason. Sym- 

metry Disqualification states that if a player sees insufficient reason to distinguish among certain objects, then she will treat 

them in the same way. Thus, she will randomize uniform randomly among the four green objects in the example from the

Introduction. Symmetry Disqualification is also related to the concept of attainable strategies in Crawford and Haller (1990) . 

While this is perhaps not explicitly stated in these papers, we believe that the Principle of Insufficient Reason and Symmetry 

Disqualification are closely related to the idea of putting objects in mental categories and we phrase our model in terms of

categories of strategies. 

Hence the third literature this paper belongs to is the literature on categorization, and categorization in strategic situa- 

tions in particular. Recent game theoretic literature has postulated that players may categorize other players ( Azrieli, 2009; 

2010 ), they may categorize games ( Gibbons et al., 2017; Grimm and Mengel, 2012; Heller and Winter, 2014; LiCalzi and

Mühlenbernd, 2019; Mengel, 2012a; Huck et al., 2011; Jehiel, 2005 ), they may bundle states ( Jehiel and Koessler, 2008 ),
3 There are also some other less related papers on focal points. Binmore and Samuelson (2006) provide an evolutionary game theory explanation of how 

focal points may arise and Alberti et al. (2012) present a model of the emergence of salience in recurrent games. 
4 There is some neurophysiological evidence supporting the assumption of agents simultaneously experimenting with alternative representations in an 

individual decision problem ( Wunderlich et al., 2011 ). 
5 Note that we focus on learning frames of the strategy set that are useful for coordination in a series of one-off interactions. Learning to coordinate in 

repeated interactions has been considered by Crawford and Haller (1990) and by Goyal and Janssen (1996) among others. 
6 A further difference with this literature is that in some of these models players with limited cognitive capacities have beliefs about the (weakly) lower 

cognitive capacities of their opponents (see e.g. Janssen, 2001; Bacharach and Stahl, 20 0 0 ). In our model agents have no explicit beliefs about which frames 

the other agents use. 
7 See also Sutton and Barto (2018) . This is by no means a comprehensive review of the vast literature on learning, other, less related to our work, learning 

models include Young (1993) and Arifovic and Ledyard (2011) , see also review in Fudenberg and Levine (1998) . 
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nodes other players must move at ( Jehiel, 2005; Neilson and Price, 2011 ), or moves in a game ( Jehiel and Samet, 2007 ) into

analogy classes. Daskalova and Vriend (2020) consider players who categorize their own past experiences and are interested 

in making predictions and coordinating their predictions with one another. LiCalzi and Maagli (2016) consider agents who 

bargain over a common convex categorization of a given set. Unlike those papers we focus on agents categorizing their own

strategies and learning which among alternative possible frames of the strategy set to use. The key assumption here and 

in most of the above cited categorization literature deriving from previous literature in psychology is that objects within 

a category are treated in the same way. Papers that show that the use of coarse categories can be optimal in other con-

texts include Mohlin (2014) ; Al-Najjar and Pai (2014) ; Mengel (2012b) ; Daskalova and Vriend (2020) . Here our focus is on

the trade-offs that emerge in using coarse and fine frames, and categories containing few versus many strategies, when it 

comes to learning which view of the strategy set to use. 

In terms of papers on bounded rationality in games more generally, Arad and Rubinstein (2012) and Arad and Rubinstein

(2019) consider players who think of features of strategies rather than strategies per se. Arad and Rubinstein (2012) is

an experimental investigation of the Colonel Blotto game linking it to a multi-dimensional reasoning procedure. Arad and 

Rubinstein (2019) propose multi-dimensional equilibrium as an alternative to Nash in such situations. 

In being about a type of bounded rationality in games, this paper bears some relation to the literature on level-k ( Nagel,

1995; Stahl and Wilson, 1994; 1995; Camerer et al., 2004; Costa-Gomes and Crawford, 2006 ). However, it differs in many

aspects from this literature. While in level-k, different levels correspond to differences in strategic sophistication, in our 

framework different levels correspond to differences in perception of the situation, or more precisely to differences in which 

attributes agents take into consideration when forming categories. Moreover, a general feature of level-k models is that a 

higher level is a best response to a lower level, whereas this is not a feature of our model. With the exception of Alaoui

and Penta (2015) , much of the level-k literature treats levels as given. To the extent that Alaoui and Penta (2015) consider

endogenizing levels of strategic reasoning and we consider endogenizing levels of framing of a strategic situation, there is 

some commonality. 

3. Model 

This section describes the general set-up of the model. There is a population of n agents who are randomly (re)matched

in pairs each period to play the same underlying game �. The underlying game � is a simultaneous-move one-shot game 

and thus has a “standard” normal (strategic) form representation. Each agent has an action set A = { a 1 , a 2 , . . . , a m 

} describing 

her options in the normal form. 8 An agent may categorize the actions available to them. A category C is a subset of the set

of actions in the underlying game �, i.e. C ⊆ A . 

Different ways to categorize the action set give rise to different mental representations or different frames. A frame F is

a set of categories partitioning the set of actions in the underlying game �, that is F = { C 1 , C 2 , . . . C k } such that 
⋃ 

i C i = A and

 i ∩ C j = ∅ for all C i , C j ∈ F . The set of frames that are feasible in a given game � is denoted by � = 

{
F 0 , F 1 , . . . , F f 

}
. We say

that a frame F x is coarser than a frame F x + i , where x ∈ N 0 , i ∈ N if and only if F x partitions the action set A of the underlying

game � into fewer categories than F x + i . 9 In that case we say that F x + i is finer than F x . 

We focus on cases where categories and frames arise “naturally” from attributes that agents distinguish. 10 This means 

that the agents in our model cannot form categories by arbitrarily combining actions but can only categorize actions on 

the basis of perceived attributes. Examples of such attributes are the color of the objects in the matching objects game

discussed in the introduction, a focal payoff in the underlying game, or labels attached to actions in the underlying game. 

Thus, attributes that prompt one to categorize one’s strategies might be (e.g. in the case of a focal payoff) or might not be

(e.g. in the case of labels) part of the formal description of the underlying game in the normal form. 

We assume that agents are able to recognize all possible attributes that are distinguished by the modeler. Thus, for 

example, if an agent needs to choose an object, with the available objects coming in different shapes and colors, we assume

that each agent does recognize these shapes and colors. 11 

The question we focus on is which views of the strategy set agents learn to use, and how this may change as they

learn in the process of social interaction. Depending on which attributes an agent takes into account, she may look at the

strategy set through different frames and use different categories. We think of the different possible frames and categories 

as competing for the agent’s attention, with the attention paid to each frame and category depending on the past success

when using them. Some frames and categories may be more successful than others, and this may change over time as all

agents may be learning which views of the strategy set to use. 
8 As we consider cases where both agents have the same options, we leave out indices for players in this description. 
9 Note that in the above definition of frame coarseness we are sidestepping the detail of how many actions any given category contains. Thus, under this 

definition a frame that contains two categories, each with five actions, is equally coarse as a frame that contains two categories, one with one action and 

the other with nine actions. This definition has the advantage of simplicy of exposition. We will clarify the importance of the number of actions within a 

category where this matters specifically for our results. 
10 The related idea of the existence of “natural kinds” has a long history in philosophy, see, for example, Chapter 7 in Book I in John Stuart Mill’s A System 

of Logic (1858) or Quine (1969) . Aristotle’s classification of animals as well as many subsequent taxonomies in the sciences can be seen as examples of 

classification on the basis of the presence or absence of some attribute. 
11 Modeling how the agents have come to recognize attributes as such is beyond the scope of this paper. One possible interpretation is that agents have 

evolved to recognize certain attributes ( Berlin and Kay, 1991 ). Our model would be complementary to such an evolutionary perspective. 
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Fig. 1. Timeline in the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each period each agent makes a decision and learns from its outcome. The timeline in the model is presented in Fig. 1 . To

undertake an action she needs to make several choices. First, she needs to choose a frame to use. Then she needs to choose a

category from the frame she has selected. And finally, she needs to choose an action from the category chosen. Every frame

and category have a measure of how good they are, that is their “strength” as determined by their past performance, and

frames and categories are chosen on the basis of these perceived strengths. Actions within a category are chosen uniform 

randomly. 

Thus, we need to specify how the perceived strengths of frames and categories are determined, and how they are taken

into account in the choices. We start with the choice of frames. In each period an agent first chooses which frame to use

with the logit rule ( McFadden, 1974; Cramer, 2003 ). For an agent i the probability of choosing frame j in period t is equal

to 

p t (F i, j ) = 

e β
F s t (F i, j ) 

∑ 

f 

e β
F s t (F i, f ) 

, (1) 

where s t (F i, j ) is the strength of frame j of agent i in period t and βF is a parameter determining the sensitivity of frame

choice to strengths. For βF = 0 choice is uniform random, all frames are chosen with equal probability. If βF > 0 frames that

had a better performance in the past are more likely to be chosen. 

After choosing a frame to use, an agent chooses a category from this frame. This choice is made analogically with the

logit rule, where p t (C i, j,c ) is the probability that agent i in period t chooses category c in frame j, 

p t (C i, j,c ) = 

e β
C s t (C i, j,c ) 

∑ 

k 

e β
C s t (C i, j,k ) 

, (2) 

s t (C i, j,c ) is the strength of category c in frame j of agent i in period t , and βC is a parameter determining the sensitivity

of category choice to strengths. 

After choosing a frame and a category, an agent chooses an action within the category chosen uniform randomly. 12 

We now turn to the determination of the perceived strengths of the frames and categories. The initial strengths of frames

and categories are captured by the parameters s F 
0 

and s C 
0 
, respectively. Thus, each agent starts out with all possible frames

and values all of them equally in period 0. 13 

The strength of the frame j that agent i uses in period t , s F t (F i, j ) , is updated according to the following rule: 

s F t (F i, j ) = s F t−1 (F i, j )(1 − αF ) + πt α
F , (3) 

where s F 
t−1 

(F i, j ) is the strength of this frame in the previous period, αF is the weight the agent places on the latest interac-

tion, and πt is the payoff from the interaction in period t . The higher the αF (with 0 ≤ αF ≤ 1 ), the greater the weight the

agent places on more recent experiences. 

The updating of the strength of the category used is analogical. That is, the strength of category c in frame j of agent i

in period t , s C t (C i, j,c ) , is updated according to: 

s C t (C i, j,c ) = s C t−1 (C i, j,c )(1 − αC ) + πt α
C , (4) 

where αC is the weight placed on the most recent experience. Note that some categories may exist in more than one frame

of the agent. In that case the strength of a category is updated with the payoff it generated whenever it is used in each

frame that it is an element of. 

To sum up, there are in principle the following free parameters in this model: the initial strengths of frames s F 
0 

and

of categories s C 
0 
, the learning rates for frames αF and for categories αC , and βF for choice of frames and βC for choice of
12 Treating all objects within a category equally is a basic feature of many categorization models ( Mohlin, 2014; Mengel, 2012b ). It is also in line with the 

Principle of Insufficient Reason. 
13 In principle one could start with any random valuation of the different frames, but it would be difficult to conceptually justify why one would start 

with one valuation rather than another. We adopt here the Principle of Insufficient Reason, which dictates that absent any reason to treat objects differently 

one should treat them in the same way. 
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categories. In addition, in principle the parameter values could also vary between agents and over time. For the sake of

parsimony, in this paper we present a version of the model where we use the same parameter values at both the frame and

the category level, i.e. s F 
0 

= s C 
0 

= s 0 , α
F = αC = α, and βF = βC = β . These parameter values are the same for each agent and

they do not vary over time. Thus, the model has three free parameter values. 14 

Our assumption here is thus that all agents start out with all possible views of the strategy set and they weigh them in

the same way. This specification also implies that they use the same learning mechanism, which does not differ between 

treatments and does not adapt over time. Thus, ex ante agents are identical. However, what is interesting is that even so ex

post they might learn to use different views of the strategy set. 

The agents do not receive any feedback on the frames other agents use, on the categories, or on the strategies chosen

by them. Neither do they receive feedback on the other agent’s payoff. They receive feedback only on their own payoff and

use this to update the strength of the frames and categories they have chosen. In this sense our model is complementary

to some other learning models (such as e.g. fictitious play, or experience weighted attraction learning). There are various 

reasons to restrict feedback in this model to an agent’s own payoff only. First, it is difficult to envisage how one could justify

an assumption of observing another agent’s internal representation of the strategy set. Second, giving only own payoff as 

feedback is consistent with the experiments that we use as a case study. Third, it seems interesting to investigate whether

a model as simple as ours can capture the stylized facts observed in an experiment with human subjects. 

Related to the limited feedback, the agents do not form any explicit beliefs about the frames and categories that other

agents use. Thus, our approach is complementary to a Bayesian approach where they would have beliefs over others’ types, 

with a type consisting of a particular frame/category combination. Here allowing for explicit beliefs would complicate the 

model unnecessarily as each agent would need to form beliefs over both the frames and the categories that other agents

could use, taking also into account that a category may exist under multiple frames. However, the fact that we use a re-

inforcement learning model should not be seen as some kind of fundamentalist anti-strategic reasoning approach. Instead 

of viewing reinforcement learning in complete contrast to players’ forming beliefs about other players’ actions, one could 

think of reinforcement learning itself as a form of (adaptive) implicit belief learning. Note that as the perceived strengths of

frames and categories that they use change over time as a result of their interaction with others, agents in our model are

learning and updating their valuations of how good the different options are. 

4. Case study: the underlying game and experiment 

In this section we introduce the underlying game, its static analysis, as well as the experimental data from the experi-

ment by Bosch-Domènech and Vriend (2013) , which we use for the case study of our model. 

4.1. The underlying game 

We introduce the non-equilibrium focal point game from the experiment by Bosch-Domènech and Vriend (2013) (hence- 

forth BDV). The main question this experiment addresses is whether a non-equilibrium focal point can help players coor- 

dinate better. At the beginning of each experimental session players are randomly assigned to be either a row player or a

column player. Each player receives the payoff matrix of the game. Players are randomly and anonymously (re)matched in 

pairs each period. A player’s task is to independently choose one of 15 possible rows (columns) of the payoff matrix. The

payoff matrix from the control treatment is presented in Fig. 2 (left), where the payoff in each cell represents the monetary 

reward that is given to each player. 15 There are overall 30 payoff-equivalent Nash equilibria in pure strategies (NE). These 

NE are scattered in the payoff matrix in such a way that there are always two NE per row (column) in an attempt to avoid

any equilibrium being more conspicuous than the others (e.g. there are no NE in the corners or the center of the payoff

matrix). 

There are three other treatments. In each of them a focal point is introduced by reducing the payoff of one of the NE as

in the example in Fig. 2 (right). The three treatments involve a payoff of 46, 87, and 99, respectively. Fig. 2 (right) shows the

87 treatment (the payoff matrices for the other two treatments are analogical, but for the magnitude of the focal point). The

idea is that after reducing the NE payoff, the corresponding action profile is no longer a NE. Given that one player plays the

focal action, the other player has an incentive to deviate to an Associated Nash Equilibrium (ANE), i.e. the NE in the same

row (column) as the focal payoff. Note, however, that since there are two ANE (one in the same row and one in the same

column as the focal point), if both players were to deviate from the focal action in the hope of realizing an ANE, they would

miscoordinate. Thus, in the focal point treatments instead of 30 NE, there are 29 NE and one non-equilibrium focal point. 

We now discuss the set of feasible frames of the strategy set in the non-equilibrium focal point game, starting with the

frames that arise in the treatments with a focal point. They are illustrated in Fig. 3 . A player can put all possible strategies

in one category, the category “any” and then choose uniform randomly among them. We call this frame F 0 . 
14 The results for a version of the model where the parameters for frames and categories differ, that is with six free parameters ( s F 0 , s 
C 
0 , α

F , αC , βF , βC ), 

are available from the authors upon request. 
15 A number of variations of this matrix were used in BDV, consisting basically of rotating or mirroring the payoff matrix, which implies that subjects in 

different sessions may face slightly differently configured payoff matrices. 
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Fig. 2. Game from Bosch-Domènech and Vriend (2013) : control without focal point (left) and 87 treatment with focal point (right). 

Fig. 3. Frame levels in focal point treatments in the BDV game. 

 

 

 

 

 

 

 

 

However, in the focal point treatments a player may observe that there is a payoff in one of the cells of the payoff matrix

that differs from all others. Thus, the player can split the category “any” into the category “focal” and the category “any with

two NE”. This view of the strategy set corresponds to F 1 in Fig. 3 . In the first category, there is only one action - i.e. the

focal action, which the player plays with probability 1 if she chooses this category. In the category “any with two NE” there

are 14 actions corresponding to the remaining 14 rows (columns). 

A player may further distinguish the associated row (column) (see Fig. 2 (right)). Thus, under F 2 a player partitions the

category “any with 2 NE” into the two categories “associated” and “any other with 2 NE”. Note that the category “associated”

can be distinguished only after distinguishing the category “focal”. The next level is F 3 . We assume that under F 3 a player

splits the category “any other with 2 NE” into the 13 rows (columns) that it comprises. 16 

Next, we turn to the control treatment (the treatment without a focal point). There are two possible frames of the

strategy set. Just as in the focal point treatments, a player can use frame F 0 , putting all possible strategies in one category

(“any”) and then choosing uniform randomly among them. Alternatively, a player could put each strategy in a separate 

category and have fifteen separate categories, each containing one strategy corresponding to the choice of the respective 

row (column). We call this frame F 1 . 
17 
16 In principle there can be a number of frames between F 2 and the frame that we described as F 3 . After distinguishing the ANE, a player may realize that 

there is another NE in the same row (column) as the ANE, and thus she may have a frame that distinguishes the corresponding actions from the remaining 

rows (columns) with two NE. Following such steps, eventually all rows (columns) could be distinguished. Note, however, that while the associated action 

has a clearly distinct feature in that a deviation from the focal to the associated action may lead to a strict payoff gain, there is no such payoff gain from 

further deviations, as all NE are equivalent. In other words, the distinction between these other rows (columns) does not appear that prominent. Therefore, 

we assume that under F 3 a player splits the category “any other with 2 NE” directly into the 13 rows (columns) it comprises. 
17 Note that this frame essentially corresponds to frame F 3 in the treatments with a focal point. 
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Fig. 4. Expected payoffs under symmetric frame profiles BDV game (87 treatment). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Static analysis 

What are the expected payoff consequences when the players apply the frames just discussed? We now discuss our 

interpretation of the predictions that VFT would make for the game we consider. By doing so we derive predictions from a

static model in order to then compare them with the findings of our dynamic model. 

For given frame profiles of the players, the underlying normal form of the game can be transformed into a payoff matrix

of expected payoffs from alternative category profiles (as in VFT). Fig. 4 shows the consequences in terms of the expected

payoffs when both players use the same frame. If both players use F 0 , they put all 15 strategies in the same category “any”.

Each player randomizes among the 15 strategies and her expected payoff is equal to 1 
15 × 1 

15 × (100 × 29 + 87) = 13 . 28 . 18 

This is shown in the first table of Fig. 4 . If both players use F 1 , each of them has two categories of strategies: “focal” and

“any with 2 NE”. As we can see, if both players use F 1 there are two equilibria: (“focal”, “focal”) and (“any with 2 NE”,

“any with 2 NE”). The equilibrium in which both use the focal category is Pareto superior to the one in which both choose

the category “any with 2 NE”. Variable Frame Theory, using the Principle of Payoff Dominance to select among alternative 

equilibria, would predict that (“focal”, “focal”) will be played if both players make a decision under frame F 1 . 

Next, we consider the case of both players using F 2 . Each player has three categories of strategies and there are three

equilibria, two asymmetric and one symmetric: (“focal”, “associated”), (“associated”, “focal”), (“any other with 2 NE”, “any 

other with 2 NE”). The two equilibria in which one player plays the focal category and the other the associated category are

the Pareto dominant equilibria in the case when both players use F 2 and hence the VFT prediction. However, VFT would not

predict which of the two equilibria would be played. 

Fig. 4 finally shows the case when both players use F 3 . There are 29 equilibria just as in the original normal form: the 2

ANE plus the other 27 NE. All of these equilibria are equally efficient and entail a payoff of 100. VFT would suggest that any

of them is a possible solution. 

The asymmetric cases, when the players use different frames, are represented in Fig. 5 . The equilibrium analysis is ana-

logical to that for the symmetric cases, and the VFT predictions are indicated in the figure. 

The static analysis above is for given frame combinations. In our learning model, however, the players actually choose 

which frame to use. Before turning to the dynamic analysis (fitting our model to the experimental data), as a referee sug-
18 We are considering here the expected payoffs in the 87 focal point treatment. The expected payoffs in the other treatments can be calculated in the 

same way. 
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Fig. 5. Expected payoffs under asymmetric frame profiles BDV game (87 treatment). 

Fig. 6. Expected payoffs under Pareto-dominant equilibrium for each frame profile BDV game (87 treatment). 

 

 

 

 

 

 

 

 

 

 

 

gested, we can extend the static analysis to identify the ‘equilibrium’ profiles of frames. This provides a benchmark for the

experimental data and for our learning model. To do this, Fig. 6 effectively summarizes the predictions of Variable Frame

Theory for different frame profiles, - i.e. selecting for all possible frame profiles the payoffs resulting from the Variable 

Frame Equilibria. 

As we can see in Fig. 6 , where the outcomes of frame equilibrium profiles are underlined, frame F 0 is strictly dominated

by the other frames, and thus, an individual player always has an incentive to go at least one frame level higher than F 0 . Also

from F 1 x F 1 , an individual player has an incentive to unilaterally go one frame level higher, as moving to F 2 allows a player to

get the ANE payoff of 100 instead of the focal payoff of 87. While any profiles involving F 0 as well as the symmetric profile

with F 1 are ruled out by such a frame equilibrium analysis, otherwise any combination of F 1 , F 2 and F 3 may constitute a

frame equilibrium. 19 

We can make the following observations. First, the asymmetric frame equilibria that we find in this static analysis suggest 

that even in equilibrium individual players may have different views of the world. Second, almost all frame equilibria imply 

that the players go for one of the ANE, 20 which means that both associated and focal actions are key. Third, given the

multiplicity and nature of these frame equilibria, the solution to the underlying coordination problem is still far from trivial, 

and it may be that some kind of miscoordination (with outcomes that are neither Pareto efficient nor a NE) is not unlikely. 

This is where the analysis of our learning model in the next few subsections comes in. It is complementary to the static

equilibrium analysis presented here, focusing in particular on the dynamics. Studying these dynamics may be interesting for 

two reasons. First, as the trajectories observed in the experimental data presented in the next section show, shining some 

light on the behavior of the players in the intermediate run may be interesting. Second, a study of these dynamics may

provide some insights as to which of these profiles we should consider as more plausible in the longer run. This applies
19 Note that in addition to these eight payoff-equivalent frame equilibrium profiles, there will be a number of mixed frame equilibria. 
20 The only exceptions are the following additional frame equilibria. In the symmetric frame equilibrium F 3 × F 3 all the NE of the underlying game may 

be relevant, and in the asymmetric frame equilibrium F 2 × F 3 we also find the equivalent (associated action, column 7) equilibrium. 
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Fig. 7. BDV experiment: average expected payoffs per player. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to the equilibrium selection of categories for a given combination of frames, as well as the selection among the frame

equilibrium profiles mentioned above. 

Focusing on these dynamics will also allow us to highlight the importance of some aspects of the learning dynamics and

the differences between the frames in this respect. More specifically, while frame F 3 may be seen as weakly-dominant in

Fig. 6 , looking at Figs. 4 and 5 illustrates that there may be some hidden cost. That is, under the finer frame F 3 there are

many more possible categories to choose from, and hence learning which category to use may take longer. This is a key part

of the learning trade-off we suggest in the paper. 

4.3. Experimental data 

We now summarize some key findings of the BDV experiment. In the experiment there were 6–8 sessions for each 

treatment, with 18 participants in each session. They were randomly divided into an equal number of row and column 

players at the beginning of the session. They kept their roles throughout the session. The game was played for fifty rounds

with random rematching in each period. The only feedback that the participants received after each round was the payoff

from the interaction. They did not receive further feedback on the other player’s action. 

Fig. 7 shows the experimental data on average expected payoffs per player per type of outcome for each period for each

treatment. 21 Conditional on coordinating, we can distinguish four types of outcomes in the BDV game: coordination on the 

focal point, coordination on the 1st Associated Nash Equilibrium (ANE), coordination on the 2nd ANE, and coordination on 

any other NE. 22 

We observe the following stylized facts in Fig. 7 . First, the average expected payoffs increase significantly over time 

in all three treatments with a focal point, indicating that participants learn to coordinate better over time, whereas in the

control treatment there is only some almost negligible increase. Second, as a result, in the focal point treatments participants 

learn to achieve higher average expected payoffs than in the control treatment. Thus, the existence of a focal point helps

participants to learn to coordinate in the experiment. Third, the higher the focal payoff, the higher the average expected 

payoffs players achieve towards the end of the fifty periods. That is, the average expected payoffs towards the end of the fifty

periods are higher in the 99 than in the 87 treatment, and higher in the 87 than in the 46 treatment, with the difference

between the 87 and the 46 treatments being more pronounced than the difference between the 99 and 87 treatments. 

Fourth, the increase in average expected payoffs in the focal point treatments is driven either by increased coordination on 

the focal point or by increased coordination on the ANE or by both, but not by increased coordination on the other NE. Fifth,

the average expected payoffs realized through the ANE increase over time in all focal point treatments. Sixth, the higher the

focal payoff, the higher the frequency of coordination on the focal point relative to coordination on the ANE at the end of

the fifty periods. Seventh, the higher the focal payoff, the less frequent the coordination on the other NE. 
21 The authors report expected rather than actual payoffs in order to clear the data of pure random matching effects. The average expected payoffs are 

based on all pairs that could have been formed in a session rather than just those that were actually formed. 
22 Note that while ex ante we expect that each of the two ANE has an equal probability of being realized, in a given experimental session one ANE is 

usually by chance realized more often than another. Once one of the ANE tends to prevail more in a given session, this difference tends to get reinforced as 

row-deviations and column-deviations from the focal to the associated action cannot co-exist successfully. Thus, ex post for each session we would expect a 

substantial difference between the frequencies of these row-deviations and column-deviations. Which of the ANE prevails will vary from session to session. 

The label “1st ANE” is given to the ANE that is realized more often in a given session. Hence, which of the two ANE is labeled “1st ANE” may differ from 

session to session. 
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Following BDV, we focus on the average expected payoffs as they capture various important aspects of coordination 

success, including the frequency of coordination as well as the different outcomes players coordinate on. 23 

Note that in principle a difference in average expected payoffs between two treatments could be due either to differences 

in individual behavior (the actions chosen) or simply to the difference in the magnitude of the focal payoff as such. In the

Appendix we disentangle these two effects, com puting precisely which effect is responsible for which proportion of the 

difference in average expected payoffs. As Table 1 in the Appendix shows, the increases in average expected payoffs when

the focal payoff increases are predominantly due to differences in behavior. Depending on the specific focal payoff change 

considered, 72% to 82% of the increase in average expected payoffs is due to differences in the behavior, and only 18% to

28% is the direct result of the increase of the magnitude of the focal payoff as such. 

To add some further perspective to this, when it comes to measuring the degree of coordination success, instead of using

the average expected payoffs (i.e. the weighted frequencies of coordination), we can also consider the unweighted frequencies 

of coordination, simply counting each coordination on a Nash equilibrium or on a focal point as a success. Fig. 13 in the

Appendix shows the equivalent of Fig. 7 , focusing instead on the unweighted frequencies of coordination by type of outcome,

and confirming the following key stylized facts. First, as we increase the focal payoff in the various treatments (“46”, “87”, 

and “99”), the unweighted frequencies of coordination increase as well. Second, the relative importance of the focal action 

increases with the magnitude of the focal payoffs, as the unweighted frequency of coordination involving the focal action 

(leading to either the focal point or an ANE) increases, relative to all others. 

Thus, this confirms that the increases in average expected payoffs (when comparing the 46 to the 87 and 99 treatments)

are not an artefact simply due to the changes of the magnitude of the focal payoffs as such, and do correspond to changes

in individual behavior. Therefore, in our analysis we will focus mostly on the average expected payoffs as a measure of

coordination success. 

5. Case study: model analysis 

We now fit the model presented in Section 3 to the data from the BDV experiment presented in Fig. 7 and we analyse

the model under the parameters that best fit the experimental data in order to learn more about which views of the strategy

set are consistent with behavior observed in the experiment. At the end of this section we also consider whether a simpler

reinforcement learning model (without frames and categories) could account for the data. 

5.1. Fitting the model to the experimental data 

As we explained above, for each of the parameters considered we assume the same value across all agents, all periods

and all decisions (choice of frames and choice of categories), as well as all treatments (including the control treatment). 

Hence, the model has three free parameters: the initial strength s 0 , the temperature parameter in the logit rule β , and the

learning rate α. To look for the model parameter values that best fit the average behavior observed in the experimental data

as summarized in Fig. 7 , we conducted an 11 × 11 × 11 = 1331 grid search of the parameter space. 24 

For each treatment, we compute the four average expected payoffs per agent for each of the fifty periods, distinguishing 

the expected payoffs per agent realized through the focal point, through each of the two ANE and through any of the other

NE, for the experimental data as well as for the data generated by the model. 25 We then compute the mean squared errors

between the experimental data and the model data, summing the mean squared errors over the four types of expected 

payoffs, over all periods and over all treatments, and we look for the parameter values that minimize this sum. 

We found that the mean squared error between the experimental data and the model data is minimized by the following

set of parameter values: s 0 = 0 . 1 , β = 5 , and α = 0 . 7 , giving a total Mean Squared Error of 13,353 or 3.71 per agent per

period. 26 

The goal of the model is to match aggregate behavior in the experiment. What we have is not a model of a representa-

tive agent, and also not of an average agent. An essential aspect of this model is that we do not reduce behavior to a single

(representative or average) agent, not even a single row and a single column agent. Instead, it is based on a number of indi-

vidual agents (corresponding to the number in the experiment). One thing to note is that although ex ante all individuals are

identical in our model, some heterogeneity in the individual behavior emerges. This is due not just directly to the stochastic

elements in the choices but also to the random matching and the different experiences. And this heterogeneity matters, as 

it is the distribution of the behaviors of the agents that matters, in the experiment as well as in the model. A model with

one representative or average row agent and one such column agent would not be able to match the stylized facts of the
23 We can think of the average expected payoffs as a weighted frequency of coordination success. Each successful coordination counts as one and is 

weighted by the payoff from the outcome that the players have coordinated on, while miscoordination counts as zero. Thus, coordination on a Nash 

equilibrium is weighted by a payoff of 100, and coordination on a focal point is weighted by the magnitude of the focal payoff. 
24 Having all payoffs normalized to [0.0, 1.0], for s 0 we considered all values in the range [0.0,1.0] in increments of 0.1, for β all values in the range [0,50] 

in increments of 5, and for α all values in the range [0.0,1.0] in increments of 0.1. 
25 The experimental data for each treatment are averaged over all (6–8) sessions in that treatment. The model data for each treatment are averaged over 

10,0 0 0 runs of the model. In each experimental session as well as in each model run, there are nine row and nine column players. 
26 To check the robustness of this optimization result, we did the grid search 10 times, each time for 10,0 0 0 runs, and this is the optimal parameter set 

for each of these 10 times. 
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Fig. 8. Learning model: average payoffs per agent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

experiment. We would also like to emphasize that modeling a group of individuals rather than a single (representative or 

average) agent is important in the following sense. While a given individual may change their behavior, at the same time

their environment is changing as well, as the other agents may be changing their behavior, thus changing what this given

individual needs to learn. Our model captures this changing of individual behavior and changing of the environment at the 

same time. 

5.2. Analysis of the model fitted to the experimental data 

We now analyze the behavior of the model under the parameters that best fit the experimental data. Fig. 8 shows the

average payoffs realized through the various types of outcomes in the four treatments. As we can see, the fitted model

matches each of the stylized facts of the experimental data listed above. 

Table 1 in the Appendix makes precise how much of the differences in average payoffs between treatments as captured 

by the learning model is due to differences in the magnitude of the focal payoff and how much is due to differences in

the behavior of the agents. The decomposition shows that just as for the BDV experiment it is also true for the model that

the differences in individual behavior are most important, accounting for 64% to 74% of the differences in expected payoffs, 

with only 26% to 36% the direct result of differences of the magnitude of the focal payoff as such. It also seems interesting

to note that for the experimental data as well as for the learning model it is the case that the larger the change of the

magnitude of the focal payoffs as such, the larger the relative importance of the change in behavior becomes. 

In the Appendix we also consider the unweighted frequency of coordination for the learning model. Fig. 13 in the

Appendix confirms that also for the model the behavior of the agents is different in the various treatments and that the

differences in payoffs are not simply a direct result of a change in the magnitude of the focal payoff as such. 

Before considering the dynamics of the choices of frames and categories in more detail, let us provide a short interpre-

tation of the specific parameter values found. The optimal initial strength of 0.1 implies that there will be some exploration

of the strategy set as far as the frame and category choices are concerned. But this exploration may be somewhat limited

as the strengths of some choices may increase above 0.1. This is also related to the other two parameters. The relatively

high α = 0 . 7 suggests that agents react relatively fast with respect to their most recent experience as to which frames and

categories to use, and that they quickly forget earlier experiences. The β = 5 means that frames and categories that have

performed better in the past have a higher chance of being selected. 

In the experiment we observe the actions of the players, the extent of coordination, and the specific outcomes that they

coordinate on. What is not observed in the experiment are the views of the strategy set that players use to make their

choices. We can use the model to analyze the dynamics of use of frames and categories under the parameters that best fit

the experimental data to gain some insights into the question which views of the strategy set would be compatible with

the behavior observed in the experiment. 

The analysis of the reinforcement learning model with frames suggests several insights into the behavior of the players 

in the experiment. By modeling frames of the strategy set and the learning of which one to use, we make explicit how

the players may be viewing the various options presented to them with the focal point game, which attributes they may

be taking into account, as well as how all this may be changing over time. In the model these dynamics themselves are

governed by the three parameters that we used to fit the experimental data. 

In order to gain some insights into which views of the game are most consistent with the behavior observed in the

experiment, we present the dynamics of the relative frequency of frame use. Fig. 9 illustrates the relative frequency of

frame use over time for all four treatments (averaged over 10,0 0 0 runs). We see that in all focal point treatments agents

increase their use of F and F and decrease their use of F and F over time. In the 46 and 87 focal point treatments F is
2 1 0 3 2 
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Fig. 9. Learning model: relative frequency frame use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

used slightly more often than F 1 at the end of the fifty periods, whereas in the 99 treatment F 1 is used slightly more often

than F 2 . The two frames in the control treatment are used equally often. Under F 0 in the control treatment an agent puts all

actions in one category and chooses uniform randomly among them. Under F 1 in the control treatment each action is put

in a separate category and these categories are then reinforced through the realized payoffs. As we can see, averaged over

multiple runs of the model, there is no difference in payoffs between these two frames. That is, for the given parameters

found, in the control treatment frame F 1 turns out to be just as good as the random choice under F 0 . 

We observe that in all three focal point treatments, agents tend to learn the frames of intermediate coarseness levels 

rather than the most or the least detailed ones. Moreover, the higher the focal point, the steeper the learning curves over

the fifty periods. The analysis suggests that while players learn to coordinate more and more successfully, they do not 

necessarily achieve this by learning finer and finer frames. 27 

Agents’ views of the strategy set remain quite mixed in all focal point treatments, even after fifty periods. The use of

the frames F 1 and F 2 is higher than the use of the frames F 0 and F 3 in all focal point treatments. Under frame F 2 agents

distinguish the focal as well as the associated action from each other and from all the other possible actions, but besides

or instead of this view, often the agents learn to use frame F 1 in which they distinguish only the focal action from all

other actions as the most relevant one. This mixing between different frames may happen at the individual as well as at

the population level. Thus, what we found is that when two agents meet they may actually look in a different way at the

strategy set (although the options each of them is facing in the underlying game are the same). 

The next question we consider is, conditional on a given frame being used, which categories within this frame do agents

choose? Fig. 10 represents the relative frequency of category use over time under the different frames ( F 1 to F 3 ) for each

of the three focal point treatments. The control treatment is omitted as agents in the control treatment under F 1 use all 15

categories corresponding to the different rows (columns) more or less equally often, with a relative frequency of about 0.07 

each (at the end of the fifty periods). 

We now analyze the category use within each frame in the different focal point treatments. In all treatments the frame F 0 
contains only the category “any”. Thus, whenever F 0 is used, the category “any” is used. Therefore no graph of category use

under F 0 is presented. Fig. 10 shows that in all three focal point treatments whenever agents use F 1 , they use predominantly

the category “focal”. The use of the category “any 2 NE” under F 1 decreases substantially in all three treatments. Conditional

on choosing F 2 , agents use predominantly the categories “focal” and “associated” in all three treatments. In all three treat- 

ments, under F 3 agents also use the categories “focal” and “associated” more often than the other categories. In terms of 

between treatment comparisons, the higher the magnitude of the focal point, the higher the use of the category focal under

F 1 at the end of the 50 periods. Moreover, both under F 2 and F 3 , the higher the focal point, the higher the relative use of

the category “focal” compared to the category “associated” at the end of the 50 periods. 

Note that overall the difference in relative frequency of use of those categories whose use increases compared to those 

categories whose use decreases in each treatment is more pronounced under F 1 than under F 2 than under F 3 . That is, we

observe that the finer the frame of the strategy set the agent has (e.g. compare F 3 to F 2 to F 1 to F 0 ), the longer it takes
27 Note that the frames are based on attributes of the game that agents perceive, and that a finer frame means that agents pay attention to more 

attributes. These levels of coarseness should not be confused with the levels of reasoning of the level-k literature, where each higher level of reasoning is 

a best response to players’ using the previous level of reasoning. In our model a finer frame is not necessarily a best response to coarser frames. 
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Fig. 10. Learning model: relative frequency category use. 
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the agent to learn which category within this frame to use. 28 This suggests that when it comes to learning, there is some

tension between using a more and a less detailed representation of the strategy set. 

On the one hand, a coarser frame (with fewer categories) has the advantage that the agents can learn relatively quickly

the value of each category within such a frame, and they can learn quickly on which category to coordinate. On the other

hand, a coarser frame (with on average more options per category) may have the disadvantage that while coordinating on 

some category may be facilitated, there will be a good chance of miscoordination within such a category. Thus, from a learn-

ing perspective, the best views of the strategy set are characterized by a mixture of coarseness and fineness: few categories,

of which some contain few actions (those on which to base the successful coordination), while the other categories contain 

many actions. It is this trade-off that gives frame F 1 a clear learning advantage, as it has only two categories, “focal” and

“any with 2 NE”. The former contains only the focal action, making coordination on it easy once this category is chosen,

while the latter includes all other actions. 

Thus, the analysis of the dynamics of our learning model suggest a rationale for some coarse framing of the strategy

set, a rationale that may not be apparent in a static analysis. 29 It also helps us understand why even if a number of frame

profiles involving F 3 give an expected payoff of 100 and are the Pareto dominant equilibrium selected according to Variable 

Frame Theory (see Fig. 6 ), the use of F 3 decreases over time. 

The dynamic analysis of the reinforcement learning model with frames shows that agents may not always learn to coor- 

dinate on a (Pareto-superior) NE and that agents may learn instead to coordinate on a non-equilibrium focal point (in line

with the experimental findings). The model provides an explanation for this, as there is a trade-off between using a finer 

frame of the game that contains the Pareto-dominant equilibria and using a coarser frame of the game that helps agents

to learn to coordinate faster. Agents may thus choose representations of the game (frame F 1 ) under which they cannot co-

ordinate on the Pareto-superior equilibrium in expected payoffs. To what extent agents coordinate on the Pareto-superior 

equilibrium in expected payoffs and to what extent they coordinate on the focal point depends on the difference between 

the Pareto-superior NE payoff and the payoffs under the alternatives. Hence the difference in outcomes observed in the dif- 

ferent treatments of the experiment can be understood as resulting from different incentives to learn to use a finer frame.

The higher the focal payoff (which can be achieved also under F 1 ), the less of an incentive there is to learn to use the finer

frame F 2 . 

5.3. Basic reinforcement learning without frames 

The analysis above shows that the reinforcement learning model with frames, in which the agents learn which frame of 

the strategy set to use, fits the experimental data well in the sense that it is consistent with the stylized facts observed in

the experiment. To provide some further perspective, in this section we will compare it with a closely related reinforcement 

learning model - without frames. That is, in this model the agents use reinforcement learning to respond to feedback about

past performance as in our model, but they do not use frames, i.e. they do not categorize the action set. This allows us to

assess how important the categorization of the action set is. Would a simpler reinforcement learning model without frames 

account for the experimental data equally well? Note that a significantly better performance of the model with frames 

would suggest that the idea of players categorizing the strategy set and learning which frame to use may be relevant as an

explanation for the behavior observed in the experiment. 

The key difference of this more basic reinforcement learning model with the model proposed in Section 3 is that here

there are no frames and categories. That is, the agents have only one possible internal representation of the game, corre-

sponding to the standard normal form of the underlying game, i.e. the payoff matrix in Fig. 2 . Otherwise the model cor-

responds to our model. Thus, each period two agents are randomly matched to play the game, each agent chooses simply

an action, i.e. one of the fifteen possible rows (columns) using the logit rule, payoffs are realized, and the strength of each

agent’s action is updated with the payoff from the interaction. 

In order to compare the two models we carry out a grid search for the parameters of the model without frames that

best fit the experimental data. As before, the parameters are the initial strength s 0 (here of each action), the β (for choice

between the fifteen actions), and the α (to reinforce the strength of each action). And just as before, we minimize the

average mean squared error, taking into account the four types of payoffs realized in the experiment (see Fig. 7 ) and those

generated by the model. Again the grid search is run 10 times, each time taking the average over 10,0 0 0 runs of the model

in order to clear out effects due to randomness. 

For 6 out of the 10 times, the optimal α found is equal to 0, and for the remaining 4 times, the optimal β found is equal

to 0. Note that these findings for the 10 runs are perfectly consistent as these parameter values imply persistent random

behavior without any learning. An α = 0 means that the strengths of the various choices are not updated on the basis of

experience and remain equal to the initial strengths. Since these initial strengths were the same for all choices, the agents

will continue to choose their actions uniform randomly. A β = 0 means that the agents do not respond to any differences

in strength between the various choices and that they make their choices uniform randomly. 

This is illustrated in Fig. 11 , showing the average payoffs per agent per type of outcome for each period under the optimal

parameter values for the model without frames, i.e. s = 0 . 8 , α = 0 . 0 , β = 5 . As we can see, in each treatment, including the
0 

28 Note that this is true even though if a category is used by the agent it is reinforced under all frames under which it exists. 
29 Note that this rationale for using coarser frames does not depend on some inability to perceive a more detailed representation of the action set. 
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Fig. 11. Learning model without frames: average payoffs per agent. 

Fig. 12. Learning model without frames: average payoffs per agent (fitting overall payoffs only). 

 

 

 

 

 

 

 

 

 

 

 

 

 

control treatment, the overall payoffs stay constant over the fifty periods at the level expected for random choices, and the

payoffs realized through the focal point or the ANE stay constant at the level expected for random behavior as well, which

means that almost all the payoffs are realized through the other NE. 

In fact, none of the stylized facts observed in the experiment (as illustrated in Fig. 7 ) is captured by this more basic re-

inforcement learning model in which the agents do not categorize the strategy set, whereas our model (see Fig. 8 ) captured

each of these stylized facts. Thus, the basic reinforcement learning model without frames cannot explain the experimental 

data any better than uniform random choice of the available actions. 

This does not mean that agents in a basic reinforcement learning model without frames as such cannot learn to coordi-

nate successfully in a game like the focal point game. This is illustrated in Fig. 12 . Instead of fitting the model to the BDV

experiment distinguishing the four types of coordination outcomes as in Fig. 7 , we here take into account only the overall

payoffs realized in each period. The optimal parameter values found are s 0 = 0 . 0 , α = 0 . 1 and β = 50 . 0 . As we can see, the

overall payoffs per agent increase over time in all treatments. Note, however, that although agents in this reinforcement 

learning model successfully learn to coordinate, none of the stylized facts observed in the experiment are explained by this 

model without frames. For example, the overall payoff differences between the treatments that we observed in the exper- 

iment cannot be explained by this reinforcement learning model, as here the payoff differences between the treatments 

become negligible, with even the control (“100”) treatment showing the same increase in total payoffs as the focal point 

treatments. Moreover, with this learning model without frames the focal point and the ANE do not play any significant role,

as almost all the payoffs are realized through the other NE. 

6. Concluding remarks 

Starting with the idea that often there may be many alternative ways to view a given strategic situation, this paper

presents a model of agents who categorize their own actions. The agents learn which frames and categories of actions to

use in the process of social interaction. The model is modest in terms of cognitive assumptions. It postulates that agents are

more likely to choose frames and categories that have performed better in the past. As a case study we applied the model
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to improve our understanding of the dynamics of behavior in the non-equilibrium focal point game from the experiment by 

Bosch-Domènech and Vriend (2013) . 

The model suggests why different players may learn to use different views of the strategy set even in the long term,

and why we may get outcomes that are neither Pareto efficient nor a Nash equilibrium. Even if agents have all possible

frames available to them, they do not necessarily learn to use the finest view of the strategy set. If agents need to learn to

coordinate, there may be some tension between fineness and coarseness of the frames they want to use. On the one hand,

learning to coordinate is easier if there are fewer categories, which favors coarse frames. On the other hand, miscoordination 

within a category is more likely the more actions there are within a category and this may favor finer frames. 

We conjecture that understanding how players learn which categorization of the strategy set to use may be useful to 

understand the dynamics of more games. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 

appeared to influence the work reported in this paper. 

Appendix. Coordination success across treatments 

In the main text we use the average payoffs by type of outcome in the different treatments as the leading indicator

of coordination success. In this appendix we decompose the differences in average payoffs between the 46 and the 87 

treatments, as well as between the 46 and the 99 treatments and between the 87 and the 99 treatments, by disentan-

gling two effects on these average payoffs when considering different treatments. On the one hand, there are the differ- 

ences in the magnitude of the focal payoff as such, and on the other hand there are the differences in behavior (actions

chosen). 

Table 1 

Decomposition of differences in average payoffs. 

BDV experiment Learning model 

Comparison of treatments 

Due to magnitude of 

focal payoff

Due to difference in 

behavior 

Due to magnitude of 

focal payoff

Due to difference in 

behavior 

46 and 87 20% 80% 29% 71% 

87 and 99 28% 72% 36% 64% 

46 and 99 18% 82% 26% 74% 

The decomposition works as follows. Take, e.g., the 46 and 87 treatments, compute for each the expected overall payoffs 

over all 50 periods, and take the difference. 30 To find what proportion of this difference is due simply to the change in

the focal payoff from 46 to 87, we fix the behavior (i.e. frequency of choices of all actions) in the 46 treatment and then

simply re-compute the expected payoffs using a payoff of 87 instead of 46 for successful coordination on the focal point. 

Any remaining difference between the expected payoffs in the 46 and 87 treatments is due to differences in behavior. The

analysis to decompose the difference in payoffs between the 46 and the 99 treatments, and between the 87 and the 99

treatments is analogous. 

Table 1 presents this decomposition of the differences in the average payoffs between the treatments in the experiment, 

and similarly for the learning model. Starting with the experiment, as the table shows, the increases in average payoffs 

when the focal payoff is increased are predominantly due to differences in behavior. Depending on the exact focal pay- 

off increase considered, 72% to 82% of the increase in average payoffs is due to differences in the behavior, and only 18%

to 28% is the direct result of the increase of the focal payoffs as such. This is matched by the learning model as well.

As the decomposition of average payoff differences for the model in Table 1 shows, the differences in individual behavior 

are again most important, accounting for 64% to 74% of the increase in expected payoffs, with only 26% to 36% the direct

result of the increases of the magnitude of the focal payoff as such. Note that the pattern of the relative importance of

differences in the magnitude of the focal payoffs as such and of differences in behavior is the same for the experimental

data and for the learning model, with the largest increase of the focal payoff (from 46 to 99) making the smallest contri-

bution when it comes to explaining the average expected payoffs (18% and 26% for BDV experiment and learning model 

respectively). 

Next, while in the main text we focus on the average expected payoffs to measure the weighted relative frequencies of

coordination, in this appendix we show in Fig. 13 the unweighted frequencies of coordination by type of outcome and by

treatment for the BDV experiment and for the learning model, as discussed in Sections 4.3 and 5.2 respectively. 
30 This analysis is robust to considering different periods instead. 
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Fig. 13. BDV experiment (left) and Learning model (right): unweighted frequencies of coordination by type of outcome and by treatment. 
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