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Abstract. Recently, economists have shown a rapidly growing attention for the 
field of artificial intelligence (AI). This contribution does not discuss the 
technology of AI, or its applications to econometrics, business. finance or 
management. Instead, we explain the signi ficance of AI for economic theory; in 
particular for the theory of decentralized economies. 

Are you after truth? Yeah. But I don't know what we mean by truth in our business. I don't see 
economics as pushing that deeply in some respects. We're programming robot imitations of people, 
and there are real limits on what you can get out of that. (Lucas in [26], p. 49) 

1. Introduction 

Recently, economists have shown a rapidly growing attention for the field of 

artificial intelligence (AI). This contribution does not discuss the technology of AI, 

or its applications to econometrics, business, finance or management. Instead, we 

explain the significance of AI for economic theory; in particular for the theory of 

decentralized economies. In section 2 we expose the essence of economic theory, 

showing how Lucas' assertion that doing economics implies "programming robot 

imitations a/people" (see motto) was meant as a metaphor. Section 3 is a digression 

on AI, while section 4 considers the employment of AI in economic theory, arguing 

that the current availability of AI techniques makes it worthwhile to take Lucas' 

observation literally. 

• I wish to thank Brian Anhur, Raja Das, Pierre Dehcz. A~an Kirman, and Martin Shubik for 
critical comments and helpful discussions on these issues. All errors and responsibilities are mine. 
The Santa Fe Institute's stimulating environment, and a grant from the Niels Stensen Foundation 
arc gratefully acknowledged. 
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2. Economic Theory 

2.1 Fundamentals 

It is widely accepted that the science of economics started with Adam Smith. The 

main accomplishment of Smith was to put into the center of economics the 

systematic analysis of the behavior of individual agents pursuing their self-interest 

under conditions of competition. The most eloquent quotation in this respect is 

presumably: lilt is not from the benevolence of the butcher, the brewer, or the baker, 

that we expect our dinner, but from their regard to their own interest" ([40], 

p. 26/27). Since then, this axiom concerning the behavior of individual agents has, 

as a matter of course, become a fundamental part of economic discou~ses.l 

A century later Edgeworth [15] considered it useful to articulate this very 

explicitly and precisely: liThe first principle of Economics is that every agent is 

actuated only by self-interest" (p. 16). To appreciate this assertion of Edgeworth 

fully, it may be necessary to examine this compound statement carefully. The second 

part asserts something about individual agents which echoes Smith. The ultimate 

motive for any action must be found in the agent's desire, agents are acting only out 

of self-interest. This presupposes that it is evident what is meant by the term self­

interest. Edgeworth [15], more than a century ago, used the word "pleasures", 

defined as II 'preferable feeling' in general" (p. 56). In the language of present-day 

economic discourses, what is self-interest is a matter of preferences. Next, let us 

consider the first part of Edgeworth's assertion. He claims that this is the first 

principle, the starting-point, of economics. In other words, the statement about 

individual agents driven exclusively by self-interest is a defining statement 

concerning the homo oeconomicus. The homo oeconomicus is an agent with given 

preferences. 

Given these preferences, the homo oeconomicus, pursuing his self-interest, seeks 

to do the best he can. That is, it is important to pay explicit attention to the homo 

oeconomicus' opportunities and his perception of these opportunities. Perceived 

opportunities are perceived possible actions plus perceived consequences. These 

perceptions themselves depend on economic behavior. First, as infonnation is a 

valuable asset, the information that an individual agent has, in particular his 

perception of opportunities, is the result of economic behavior (see [41 ]). Secondly, 

also the development of cognitive skills is a result of economic behavior (see [9]). 

Thus, opportunities are defined such that all perceived costs and benefits are taken 

1 Whether this was also exactly as Smith himself intended to put these matters is an interesting, 
but different. question (see, e.g., [23]). 



NJ. Vriend / Artificial Intelligence and Econon.ic 17zeory 33 

into account; in particular information, decision making and transaction costs. 

Opportunities are not necessarily only transaction opportunities. Agents may also 

have possibilities to search, to talk with a friend, to go to school or to the beach, to 

do nothing, etc. This is most clearly stated by Becker [10]: IlWhen an apparently 

profitable opportunity ... is not exploited, the economic approach does not take 

refuge in assertions about irrationality e ••• Rather it postulates the existence of costs, 

monetary or psychic, of taking advantage of these opportunities that eliminate their 

profitability - costs that may not be easily "seen" by outside observers" (p. 7). 

Economic behavior simply means that an individual agent chooses (one of) the 

most advantageous options, given his preferences, in his perceived opportunity set. 

Hence, given the homo oeconomicus' perceived opportunities and preferences, his 

actions can be derived rather mechanically. It is this what Lucas meant when 

asserting that doing economics is like Ilprogramming robot imitations of people" 

(see motto). 

2.2 Modeling the homo oeconomicus 

Having established that the homo oeconomicus' actions depend upon his preferences 

and perceived opportunities, the central concern is how to model this. One way to 

deal with preferences in economic theory would be to ask advice about their 

properties from, for example, psychologists. However, one could wonder why 

economists would bother much to make specific assumptions concerning individual 

preferences, even if one would agree that these preferences drive the individual's 

actions. Until recently, the idea was the following. By making assumptions about 

individual preferences one wanted to derive certain characteristics of aggregate 

behavior. By now we know that it is theoretically impossible to get needed 

characteristics of aggregate demand functions (needed in order to prove stability of 

the tatonnement process) by imposing more and more restrictions upon individual 

characteristics (see [25] for a survey). In other words, in the aggregate, the 

assumptions of individual preferences have in general no implications (see also [2]). 

Therefore, approaches which rely less upon specific assumptions concerning 

individual preferences may be more promising. Stigler and Becker [42] argue that 

preferences should not only be taken for given in economics, but can also be 

considered roughly the same for everybody. Differences in actions are then 

completely ascribed to differences in perceived opportunities. Still further goes 
Becker's [8] exercise, which focusses exclusively upon the perceived opportunity set. 



34 NJ. Vriend / A 11 ificia I Intelligence and Econol11;c 171eo,), 

Allowing for virtually every imaginable type of individual behavior/ he analyzes 

the relations between opportunity sets of individual agents and market outcomes. 

This points to the second important problem concerning economic models: the 

modeling of the agents' perceived opportunities, without turning economics into a 

psychology of perception. Basically, the problem is that economists are definitely not 

in a position to contribute to an explanation of how a set of given physical stimuli, 

including both the agent's objective environment and his own brain status and 

activity, leads to a set of perceived opportunities. When, in the economic process, 

perceived opportunities evolve over time, these changes will not only be due to a 

change in the perception of the underlying circumstances, Le., learning, but also to 

a change in these circumstances themselves, as a result of the interactions between 

the agents. And, in general, these learning processes and the other dynamic 

economic forces may interact with each other. This points to the following way to 

abstr<lct from psychological matters concerning the perception of opportunities. 

Assume that the perception of opportunities is an endogenous process. That is, 

the set of perceived opportunities depends strictly upon the preceding sequence of 

actions and outcomes. While the agents' actions depend on their perceived 

opportunities, these opportunities and their perceptions depend on the agents' own 

market experience as the result of previous actions. Thus, in a formal model, actions 

will be a function of perceived opportunities, and perceived opportunities a function 

of earlier actions. As a result one gets a sequence analysis of actions as function of 

previous actions and outcomes, while perceptions or expectations do not appear 

explicitly but only IIbetween the lines" ([ 18], p. viii). 

The crucial issue, then, is the specification of such functions, mapping the 

agents' past actions and outcomes into current actions. Clearly, to tie down the set 

of functions a priori in an ad hoc way, assuming simple fixed rules-of-thumb, would 

not be very interesting. In the next section we will show how the current availability 

of artificial intelligence techniques may be useful here. 

3. Artificial Intelligence 

In this section we discuss three approaches to machine learning that may be relevant 

to economic theory. We will not argue that rational economic agents do use such AI 

techniques; the 'as if argument will do. The approaches examined are: Genetic 

Algorithms, Classifier Systems, and Artificial Neural Networks. Both CSs and GAs 

2 Becker [8] calls it 'irrational' behavior, which he defines as every kind of behavior not equal 
to choosing the most preferred option in the perceived opportunity set. 
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have for a large part been developed in the 'school' of John Holland at Ann Arbor, 

Michigan (see, e.g., [20], [21] and [22]). Useful introductory surveys can be found 

in [14] or the special issue on genetic algori thms of Machine Learning [30]. [17] is 

an excellent elementary but comprehensive textbook. For an introduction to ANNs 

see, e.g., [28] and the references therein. As AI in economics is just a tool, used in 

order to model individual agents, the presentations of these approaches in this paper 

serve only pedagogical goals, and are not intended as an exhaustive historical survey 

or critical discussion. 

3.1 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are often considered as black boxes. For our 

purpose, such an approximate view will suffice. ANN s map a set of input features 

to a set of output features. In order to be able to achieve such a task, an ANN needs 

some learning. To start with, one needs a training set consisting of a number of input 

patterns x plus attached to each observation the corresponding 'true' or 'correct' 

value of some output variable y. The input patterns are presented to the ANN, and 

for each input pattern the ANN's actual output y is compared with the correct or 

'target' output y.3 When the whole batch of input patterns is processed, the internal 

parameters of the ANN are adjusted on the basis of the errors, which are the 

differences between the outputs determined by the ANN y and the target outputs y.4 

This process is repeated, using the same set of input patterns, until the error is 

smaller than some given limit. 

The most interesting feature of ANNs is that they use some sort of general 

flexible functional form, without any pretensions about the internal representations 

of reality, data generating processes, or causal chains, in order to yield an inherently 

misspecified approximation of an unknown function. s Conceptually, 'training' or 

'learning' with an ANN seems equivalent to running an Ordinary Least Squares 

regression. Given a number of observations concerning some explanatory variables 

x (input) and the corresponding actual values of a dependent variable y (target 

output), one calculates parameter values to determine the estimated dependent 

variable y (output) such that some error term, measuring the difference between y 

3 In an economic model, the ANN's input would be the agent's market experience, the ANN's 
actual output y would be its action chosen for the next period, while the 'correct' or target output 
would be that action that would maximize payoff. 

4 The most commonly applied method to adjust the parameters is backpropagation (see [47]). 
5 Lippmann [28] refers to a theorem proven by Kolmogorov and described in [29] which 

effectively states that a three layer ANN with n(2n+ 1) nodes using continuously increasing 
nonlinearities can compute any continuous function of n variables (see also [48 D. 
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and y, is minimized. The adapted parameter set or estimated coefficients can then 

be used to make predictions. Hence, to an econometrician ANNs are a useful new 

technique to cope with the problem of misspecification. 

There are, however, some conceptual problems with the ANN learning method 

sketched above. The main problem is that the method relies completely upon some 

external supervisor. In essence, by correcting parameters on the basis of some error 

function representing a measure of the distance between the' target' output y and the 

ANNs actual output y, the external supervisor teaches the ANN to reproduce the 

target output for each input pattern in a training sequence. In other words, 'learning' 

by such ANNs means generalizing, summarizing and memorizing a given input­

output mapping.6 In general, however, and in particular in a decentralized economy, 

there is no external supervisor to teach the ANN which is the 'correct' (Le., the best 

possible) output, or how much it differed from such a target, not even afterwards. 

Often, there is only a notion of what the ANN should accomplish plus a success 

measure of its performance.7 That is, the ANN has to learn through 'reinforcement' 

(see, e.g., [31 ]). Sometimes the sketched process of error correction in supervised 

ANNs is also called reinforcement learning. As Barto et al. [7] point out, that is 

misleading. Error correction mechanisms are not based on a relative assessment of 

consequences of the ANN's output, but only on knowledge of the supervisor of both 

the correct and actual output. This does not involve feedback that passes through the 

ANN's environment. Before we sketch how reinforcement learning can be 

implemented in ANNs, we give an example to illustrate this important problem 

further. 

According to Zermelo's Theorem: "ln chess either white can force a win, or 

black can force a win, or both sides can force at least a draw" ([6], p. 1). Hence, 

the learning task concerning chess is clear cut: Discover which of these three options 

apply, and determine the corresponding moves to play. Although chess is an 

extremely simple game when compared with real life, and although it is even closed 

6 One could even question whether supervised ANNs belong to the domain of AI. The most 
commonly used implicit definition of intelligence applied to AI follows from the 'Turing test': If 
a computer behaves in a conversation in a way as to be confused with a human being, then it 
should be defined intelligent. This definition leaves no role whatsoever for the role of learning. 
Poggio [34) reports on a recent experiment in which some very simple computer programs turned 
out to confuse people (see also [38)), and argues that a system should be considered intelligent 
when it is able to learn unsupervised. There do exist ANNs that learn without supervision. Usually, 
these produce classifications simply clustering input data. For example, assuming all handwritten 
b's look m~rc like each other than like c's or d's etc., they put al1 b's together in one class, all c's 
in aoother class, etc. Afterwards, one just has to label the right class '8', 'e', etc. 

7 For example, the ANN has to generate profits or utility, mapping an observed state (input) to 
actions (output), where the measure of success is simply the amount of profits or utility. 
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in the sense that the number of possible moves is finite and countable, the number 

of possible moves and positions exceeds all existing computing power. Nevertheless, 

a learning ANN would need a measure for the distance between its own evaluation 

of positions and the correct or 'target' evaluation of positions in order to adjust its 

parameters. The makers of Deep Thought, one of the best computer chess players, 

have resolved this problem in the following way. In some cases the correct 

evaluations can be found by performing depth first searches. In other cases, they use 

a batch of 900 master games, and simply define the moves played by these first-rate 

human players as the optimal or correct moves. 8 Now, by summarizing and 

memorizing the knowledged expressed by these grandmasters, Deep Thought has 

caught up with the best human players, and will, perhaps, be able to overtake even 

Kasparov, actually the best 'supervisor' available, but this falls well short of learning 

the game of chess as stated above.9 

This example shows that the problem with supervised ANNs is not that they use 

information supplied by another agent. A priori there is no reason to distinguish 

between knowledge based on information about what other agents have done in a 

certain situation, and knowledge based on own prior experience in such 

circumstances; and often the former source of knowledge will be much less costly 

(see [49]). The problem with supervised ANNs is that the knowledge of some other 

agent is proclaimed 'true' or 'correct'. Hence, such a ANN does not much more 

than trying to imitate a supervisor that is presumed to be perfect. In the case of Deep 

Thought this presumption is clearly inaccurate. 

One way to solve the problem of reinforcement learning is using two ANNs 

(see, e.g., the seminal [7]). The basic ANN gets its input x (the observed state) and 

produces an action y as its output. Soole unknown system, e.g., 'the economy', then 

determines a final outcome V. In order to adjust the parameters of the basic ANN 

such that the unknown optimal or 'target' action y is approximated, i.e., such that 

the final outcome V as a measure of success will be maximized, one needs 

infonnation about this unknown system. This information can be constructed as 

follows. A second ANN learns to mirror the unknown system, mapping the observed 

inputs x directly to outputs V that are a prediction of the actual final outcome V of 

the system. The target output of this second ANN is the actual V as realized by the 

unknown system. Learning of this ANN takes place through an error correction 

8 II[AJny position reached after a grandmaster's move is, after all. likely to be better than all of 
the others that would have been reached via alternative moves" ([24], p. 48/49). Note that this is 
exactly Friedman's [16] selection argument in his side-remarks about optimizing billiard players. 

9 Although this judgement may seem rather cynical, the makers of Deep Thought themselves are 
well aware of these limitations: "Deep Thought ... remembers everything but learns nothing .. ," 
([24], p. 50). 
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mechanism aimed at minimizing the difference between V and V. Remember that 

this second ANN does not need to understand the underlying mechanisms of the 

economic processes which determine the actual outcome V. This second ANN, then, 

supplies the necessary reinforcement signals to guide the adjustment of the 

parameters of the basic ANN. 

Another, more recent but closely related, approach to the problem of 

reinforcement learning is the technique of Q-Ieaming [46], in which an ANN is used 

not only to evaluate the consequences of its actions, both in tenns of immediate 

rewards and its estimate of the value of the state to which it is taken, but also to 

decide upon the actions (see also [31 ]). 

This discussion of ANNs should have made clear how essential the difference 

between reinforcement learning and supervised learning is. Understanding this issue 

helps to see why Classifier Systems and Genetic Algorithms may be useful tools to 

overcome this obstacle. 

3.2 Genetic Algorithms 

A Genetic Algorithm (GA) consists of a set of actions, with to each action attached 

a measure of its strength. This strength depends upon the outcome or payoff that 

would be generated by the action. Each action is decoded into a string. Through the 

application of some genetic operators new actions are created, that replace weak 

existing ones. GAs are search procedures based on the mechanics of natural selection 

and natural genetics. The set of actions is analogous to a population of individual 

creatures, each represented by a chromosome with a certain biological fitness. The 

basic GA operators are reproduction, crossover and mutation. Reproduction copies 

individual strings from the old to a new set according to their strengths, such that 

actions leading to better outcomes are more likely to be reproduced. Crossover 

creates a random combination of two actions of the old set into the new one, again 

taking account of their strengths. This makes that new regions of the action space 

are searched through. Mutation is mainly intended as a 'prickle' every now and then 

to avoid the set to lock in in a sub-space of the action space. It randomly changes 

codes of a string, with a low probability. 

The key feature of GAs is their ability to exploit accumulating infonnation about 

an initially unknown search space, in order to bias subsequent search efforts into 

promising regions, and this although each action in the set refers to only one point 

in the search space. An explanation of why GAs work is condensed in the so-called 
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'Schema Theorem' .10 When one uses the binary alphabet to decode the actions, then 

10110*** would be an example of a 'schema', where * is a so-called 'wild card' 

symbol, i.e., * may represent a 1 as well as a O. The following example shows the 

power of these schemata. Suppose an individual agent has two decision variables (J/ 

and Y2) and an unknown payoff function (V), then the search space may be 

represented by the metaphor of an unknown landscape. Each action as such refers 

to only one point in this unknown landscape. As figure 1 shows, this does not 

contain much information as to where to find the most attractive regions. 

Using the binary alphabet and constructing the string by alternating the bits for 

Y/ and the bits for Y2' the portrayed sample action (J,tY2) = (12,4) would be 

represented by the string 10110000. 11 Hence, 101 10*** would be one of the 

schemata present in this action. This schema contains much more information about 

the landscape, as figure 2 shows, where the shaded areas are those regions in which 

all possible combinations of y, and Y2 are processed implicitly by the genetic 

operators. 

Reproduction, crossover and mutation select strings and then operate on the 

coded information represented in these strings. Hence, the more the information 

referring to a single point in the search space is fragmented into small pieces, the 

more schemata are processed implicitly, and the more information is used by these 

genetic operators. This leads to the requirement of using the smallest possible 

decoding alphabet. Not all schemata are processed equally usefully, and many of 

them will be disrupted by the genetic operators; in particular by the crossover 

10 Also called 'Fundamental Theorem of Genetic Algorithms' (see, e.g., [17] or [44 D. 
11 1lle string for J, would be 1100, and for Y2 0100. 
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operator. The 'Schema Theorem' says that short, low-order, high performance 

schemata will have an increasing presence in subsequent generations of the set of 

actions, where the order of a schema is the number of positions defined in the string, 

and the length is the distance from the first to last defined position. Although this 

'implicit parallelism' is also sometimes called 'randomized parallel search', this 

does not imply directionless search, as the search is guided towards regions of the 

action space with likely improvement of the outcomes. 

GA~ are especially appropriate when, for one reason or another, analytical tools 

are inadequate, and when point-for-point search is unfeasible because of the 

enormous amount of possibilities to process, which may be aggravated by the 

occurrence of non-stationarity. But the most attractive feature of GAs is that they do 

not need a supervisor. That is, no knowledge about the 'correct' or 'target' action, 

or a measure of the distance between the coded actions and the 'correct' action, is 

needed in order to adjust the set of coded actions of the GA. The only information 

needed are the outcomes that would be generated by each action. In this sense GAs 

exploit the local character of information, and no further knowledge about the 

underlying outcome generating mechanisms is needed, like e.g., the derivatives of 

certain functions. 

Although a GA does not need information concerning the 'correct' action, a 

drawback of GAs is that they still do need, for every coded action present in the set, 

the information concerning the outcome that would be generated by that action. 

When there is no supervisor, typically not even such information will be available. 

Note that this information requirement is considerably less than in the case of a 

supervised ANN. We will now examine Classifier Systems, and show that those can 

be used to supply the necessary information by implicitly constructing a prediction 

of the outcomes for all actions in the set. 
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3.3 Classifier Systems 

A Classifier System (CS) consists of a set of decision rules of the lif ... then ... ' 

form. To each of these rules is attached a measure of its strength. Actions are chosen 

by considering the conditional Ilf ... ' part of each rule, and then selecting one or 

more among the remaining rules, taking into account their strengths. The choice of 

the rules that will be activated is usually determined by means of some stochastic 

function of the rules' strengths. 

The fundamental virtue of CSs is that it aims at offering a solution to the 

reinforcement learning or 'credit assignment' problem. A complex of external 

payments and mutual transfers of fractions of strengths can be implemented, such 

that eventual1y each rule's strength forms implicitly a prediction of the payoff it will 

generate when activated. The basic source from which these transfers of strengths 

are made is the external payoff generated by an acting rule. The strengths of rules 

having generated good outcomes are credited, while rules having generated bad 

outcomes are debited. Thus the outcomes encountered I induce' successive actions. 

Note that one can distinguish two levels of endogenity in a CS. First, the set of 'if 

... then ... ' rules forms explicit links between states and actions, i.e., between the 

outcomes of previous actions and subsequent actions. Secondly, the strengths of 

these relations between states and actions develop endogenously, i.e., the relative 

strengths of the rules in the set are determined by the rules actually executed and by 

the outcomes they have actually generated. 12 Two factors make that the direct 

reward from the CS's environment to the acting rule does not necessarily reinforce 

the right rules. First, the state in which the CS happens to be may depend, among 

other things, upon previous decisions. This is important, as only those rules of which 

the conditional I if ... ' part was satisfied could participate in the decision of the 

current action. Hence, when the current decision turns out to give high payoffs, it 

may be the rules applied in the past which gave that rule a chance to bid. An 

example is the game of chess, where the final move, the one that actually receives 

the payoff from the environment, can be made only thanks to numerous preceding 

moves. Secondly, more in general, it may be that not all payoffs are generated 

immediately, due to the presence of lags or dynamics, implying that the current 

outcomes are not only determined by the current action. but also partly by some 

actions chosen previously. This credit assignment problem is dealt with by the so­

called IBucket Brigade Algoritlun'. In this algorithm each rule winning the right to 

be active makes a payment to the rule that was active immediately before it. When 

12 This endogenity is the main difference between CSs and Expcn Systems, where these links are 
determined a priori by the expertise of the creator of the system. 
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the CS repeatedly goes through similar situations, this simple passing-on of credit 

makes that the external payoff may be distributed appropriately over complicated 

sequences of acting rules leading to payoff from the environment. 13 

Note that Classifier Systems and GAs are complementary, and they can very 

well be applied as a combination. 14 While CSs are used to govern the reinforcement 

learning process, determining the strengths of the actions and determining which 

action will actually be executed, the GAs can be used to generate new sets of 

actions. The frequency at which the latter is used is determined by the GA rate. Note 

that a too high GA rate would make that the CS does not get enough time to predict 

the value of the newly created strings, while a too low GA rate would lead to lack 

of exploration of new regions. 

4. The Significance of AI for Economic Theory 

We have seen in section 2 that the fundamental characteristic of the homo 

oeconomicus is that he just chooses the most preferred option in his perceived 

opportunity set. We have also argued how the need for abstraction from 

psychological issues concerning the perception of opportunities, led to the idea of 

a sequence analysis of actions as functions of previous actions and outcomes. The 

property that makes the CS/GA approach so fruitful for economic theory is, that the 

relations between actions and previous actions and outcomes can be kept completely 

flexible. This implies that one is in a position to analyze how far 'the market' 

provides sufficient structure to tie down the set of perceived opportunities, i.e., to 

constrain the behavior of the individual agents (cf., [8]). This is what one could call, 

following Blume and Easley [13], a 'positive theory of action'. Hence, nothing 

seems more obvious than taking Lucas' assertion that doing economics implies 

"programming robot imitations of people" (see motto) literally. Therefore, one could 

run a many agent simulation of a decentralized economy, in which each individual 

homo oeconomicus is programmed separately applying a CS/GA, seeking to do the 

best he can in his unknown payoff landscape. As the individual agents interact with 

each other, these landscapes for the individual agents may co-evolve. IS 

13 For an analysis of the similarities between the 'Bucket Brigade Algorithm' and the method of 
backpropagation used in ANNs, and between CSs and ANNs in general, see [11]. 

14 Often GAs are presented as an add-on to CSs, or the other way round. However, although CSs 
and GAs arc closely related to each other, it seems useful to distinguish them conceptually very 
clearly. 

IS See, e.g., [32], [1], [36], [5], or [45]. 
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Note that the agents modeled wiih a CS/GA are not 'myopic'. In a CS/GA the 

whole history of the agents' experience counts, and they are competent enough, to 

give up direct profits/utility, in order to gather information to generate more payoff 

later on. Moreover, also rules that do not directly generate payoff are reinforced 

according to their merits. This makes that agents may 'recognize' valuable sequences 

of actions. 

It would also be confusing to depict the behavior of the individual agents 

modeled by a CS/GA as (adaptive', and it might be evidence of an important 

misconception of the issues at stake. Typically, (adaptive' behavior is thought to 

mean something as (too passively walking behind the facts'. Such a description 

would be fully inappropriate for the agents modeled by a CS/GA. These agents are 

active searchers for the most advantageous opportunities. They experiment to 

improve their perceptions of these opportunities, continuously exploring the most 

promising regions of their action domain. The crucial point is that what the agents 

perceive to be promising is a function of the exogenously given information at the 

start of the process, and all the experiences during the process. What is excluded are 

ad hoc exogenous changes of perceptions during the process, because those would 

sweep away every hope to find constraints imposed by the market process upon the 

individual agents' possibly perceived opportunities. 

It should also be stressed that the CS/GAs are not models of agents using only 

simple decision rules. Although each rule for itself in a CS/GA is a simple rule, it 

is the set of rules that forms the link between actions and previous actions and 

outcomes, and it is not the individual rules that matter. Moreover, this set of rules 

may change, applying the genetic operators. As is well-known, such a representation 

of knowledge is not restrictive in any sense, and any program that can be written in 

a standard programming language can be implemented in a CS. 16 Hence, a CS/GA 

may be thought to model the most complex and sophisticated human decision 

procedures, as well as the most simple. In other words, any decision can be modeled 

(as if made by a CS/GA. 

Two possible criticisms of many agent simulations using CS/GAs might be that 

the behavior of the agents is ad hoc and the way the agents are modeled is arbitrary. 

Both would be correct observations, but, as we will argue here, only in the following 

very speci fie sense. 

A general characteristic of agents living in the complexity of a {large world' is 

that they do not have a true, well-specified model to work with. That is, the agents' 

problem situation is ill-defined (see [3] and [4]). Hence, instead of basing their 

16 That is, these systems are 'computationally complete' (see [33]). 
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actions on deductive reasoning from universal truths, they are forced to inductive 

reasoning. Inductive reasoning proceeds from the actual situation faced by an agent. 

In this sense, such agents' behavior is adaptive or reactive. Sometimes this is also 

known as the 'cross that bridge when you come to it' principle (see [37]), because 

" ... in a large world ... there are some bridges that you cannot cross before you 

eome to them" ([ 12], p. 1). Hence, it is only in a very literal sense that inductive 

behavior might be called 'ad hoc'. Note that it does not imply in any sense an 

'anything goes' , i.e., an abandoning of logical principles or rationality. It would seem 

to come close to rationality in the sense of 'situational/ogle' (see, e.g., [19] or [35]). 

Modeling this inductive behavior of the individual agents with CS/GAs is 

certainly arbitrary, but any approach would be arbitrary to some extent. Remember 

that, in general, in a decentralized economy the agents cannot perceive what the 

objectively optimal actions would be. We have argued that economists do not have 

the tools to construct explicit mental models for the agents' perceptions, and that 

hence, we could follow the approach of mapping actions and outcomes directly to 

new actions, leaving the mental processes implicit. This mapping, in order to 

determine the agents' new actions, is not fixed a priori, but kept flexible. Competing 

hypotheses are tested and their perceived usefulness is updated in parallel. 

Reinforcement of hypotheses takes place on the basis of payoffs experienced in the 

market. New hypotheses are formed from building blocks of rules that had turned 

out to be useful. Bad hypotheses are easily discarded as experience accumulates. 

Thus, reinforcement, through actual payoffs experienced in the market plays, the 

pivotal role in a CS/GA. This means that as far as these algorithms are arbitrary, it 

is the market that acts as the arbitrator! For an economist that must be more than 

reasonable. 

Although CS/GAs are not the only possible algorithms in this context, it seems 

that alternative algorithms have to meet at least the following three requirements. 

Firstly, they should be equally flexible as to the possible mappings from the agents' 

previous actions and outcomes to current actions. Secondly, the market should play 

an equally essential role in directing the agents' actions. Thirdly, the dynamics of 

learning and the dynamics of the economic forces as such should be modeled at the 

appropriate two, conceptually distinct, levels.17 

In order to answer the question whether the market provides sufficient structure, 

one has to look for the emergence of regularities in the actions and outcomes during 

the process of creating and trading away of opportunities by economic agents. 

Interesting are those regularities that cannot be deduced directly from the built-in 

11 Cr., many levolutionary' models in economics in which some fonn of Ireplicator dynamics' 
is applied, modeling these two types of processes at the same, population level. 
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properties of the individual agents or some other microeconomic aspect of the 

model; at least not by any argument which is substantially shorter than producing 

that regularity by running the simulation itself (see [27]). The emergence of such 

regularities is usually related to the metaphor of the 'Invisible Hand'. While the 

individual agents take care only about their own self-interest, it is the 'Invisible 

Hand' that is thought to perform a regulating function, bringing about coordination 

of economic activities. 

The final objective of such type of analysis is not to become wise with respect 

to artificial worlds. but to understand what is going on in real decentralized 

economies. Therefore, a serious question to examine would be, whether it is possible 

to 'recover"8 regularities known from reality in, necessarily simple, simulated 

models, and to analyze how these regularities depend upon parameter choices or 

modeled mechanisms. Simulations of artificial economies fulfill here the same role 

as any formal, mathematical model that abstracts from some aspects of reality. They 

may suggest ways how one might understand what is going on in a decentralized 

economy. 
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