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Abstract

Alongside increasing returns, network externalities, and information cascades,

information contagion has been presented in the literature as an explanation for

particular patterns of macrobehavior that may seem at odds with the underlying

micromotives. We present an agent-based computational economics model that

could provide a microfoundation for information contagion. Our model exhibits

self-organization through information contagious behavior, and the emergence of

spontaneous orders, in which typically most agents choose the same superior item.

But it turns out that this is not a simple monotonic process from disorder to order.

Instead, the system continually moves back and forth between order and disorder

as the self-organization is a continuing story in which the emerging order unravels

time and again. In other words, information contagion is an inherently complex

phenomenon.
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5.1. INTRODUCTION

Alongside increasing returns (Arthur, 1989), network externalities (Katz and

Shapiro, 1985, 1986), information cascades (Bikhchandani et al., 1992), and

herding behavior (Banerjee, 1992), information contagion (Arthur and Lane,

1991) has been presented in the literature as an explanation for particular

patterns of macrobehavior (for example, path-dependence and lock-in effects)

that may seem at odds with the underlying micromotives. But whereas these

other explanations have been shown to have a proper microfoundation (either

related to changing productivity or changing preferences, or to Bayesian

updating in the face of incomplete information), information contagion has

remained a phenomenon that occurs only when certain ad hoc rules of thumb

for individual behavior are assumed.

Therefore we study the phenomenon of information contagion in a setup that is

closely related to the one presented in Arthur and Lane (1991), in which

individuals have to make repeatedly a choice between two previously unknown

items while they can rely only on some information from previous adopters. We

will present an agent-based computational economics (ACE) model that provides

a microfoundation for information contagion, based on a simple model of

adaptive behavior with agents trying to do the best they can, and without needing

to assume that they use certain ad hoc rules of thumb. Our model exhibits self-

organization through information contagious behavior, and the emergence of

spontaneous orders, in which typically most agents choose the same, superior

item. That is, through a self-organizing process the economy overcomes the

problem of the division of knowledge (see, e.g., Hayek, 1948). But it turns out

that this is not a simple monotonic process from disorder to order until the

solution has been reached, with a happyending. Instead, the system continually

moves back and forth between order and disorder. That is, the self-organization

is a continuing, ongoing story, in which the emerging order unravels repeatedly.

In other words, information contagion, unlike increasing returns to scale,

network externalities, information cascades, and herding behavior, is an

inherently complex phenomenon.

This chapter is organized as follows. Section 5.2 presents our ACE model of the

emergence of information contagion, and Section 5.3 analyzes the properties of

the model. In Section 5.4 we put our model into a somewhat wider perspective by

discussing some related literature on information contagion and social learning,

while Section 5.5 concludes.
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5.2. THE AGENT-BASED COMPUTATIONAL MODEL

The basic choice problem we consider is that of a population of individual agents

each of whom, sequentially face a decision problem between two items with

uncertain qualities. We can think of these two items as new products, movies,

technologies, services, financial gurus, or whatever binary choice agents might

need to make frequently in every day life.

The only information the agents have is the choices plus the corresponding

values experienced by a sample of other agents who had faced the same

decision problem before them. This implies that there is an “information

externality.” That is, the choice of an agent does not only lead to utility for

himself, but it will also be added to the pool of information from which other

agents sample. The question, then, is what the consequences of this information

externality are.

This basic choice problem has been considered in the literature. See in

particular Arthur and Lane (1991), Dosi et al. (1994), Narduzzo and Warglien

(1996), and Lane and Vescovini (1996). Basically what this literature shows, both

theoretically and empirically, is that agents may behave in a way that the decision

of a given agent positively affects the expected decisions of subsequent agents,

leading to path-dependent lock-in effects. That is, there may be a diffusion process

such that a certain choice once it starts being made by a certain number of people

spreads quickly in a population (without the values actually experienced

necessarily implying this). Since the only link between the decisions of the

agents is the information externality, this contagious phenomenon is called

“information contagion.” What is missing in this literature is an explanation as to

why we should expect people to behave in such a way that the information

externality does indeed imply information contagion. In this respect, the literature

on information contagion differs from the literature on increasing returns (Arthur,

1989), network externalities (Katz and Shapiro, 1985, 1986), information

cascades (Bikhchandani et al., 1992), and herding behavior (Banerjee, 1992).

All these models have been presented in the literature as an explanation for

particular patterns of macrobehavior (for example, path-dependence and lock-in

effects) that may seem at odds with the underlying micromotives. But whereas

these other explanations have been shown to have a proper microfoundation

(either related to changing productivity or changing preferences, or to Bayesian

updating in the face of uncertainty), information contagion has remained a

phenomenon that occurs only when certain ad hoc rules of thumb for individual
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behavior are assumed. Our ACE model will provide an explanation for

information contagion.1

5.2.1. The basic choice situation

The model has a population of 100 decision makers. In a given period they face

a choice between two items that were previously unknown to them. Each new

item i is characterized by the expected value of the utility it will generate, EVi.

These expected values are unknown to the individual agents. Given an expected

value, EVi, the value that a specific agent will actually experience from an item

will be a random draw from a uniform distribution with support from

EVi 2 0.25 to EVi þ 0.25. Hence, if a given item i is characterized by an EVi

of, say, 0.40, the actual utility levels experienced by the individual agents

choosing this item will range from 0.15 to 0.65, with every utility level in this

range equally likely to occur. The stochastic character of the payoffs generated

reflects idiosyncratic productivity or taste factors, but we can also think of the

random component of the payoffs as measurement errors of a given item’s

actual value.

Notice that we do not have any increasing real returns to scale of any form, no

change in taste, endogenously determined utility depending on the number of

adopters, nor are there complementarities or network externalities. Each

individual agent’s utility of a certain item i is simply an independent draw from

the same uniform distribution characterized by the item’s expected value EVi.

Figure 5.1 gives an example of two items with expected values EV1 ¼ 0:40; and
EV2 ¼ 0:55:

The agents, then, face their choice problem sequentially, with the order of

the agents being random. Although each individual agent himself has no

experience with these two specific new items, he can draw six random samples

from the people who have already made a decision before him. For each of the

elements in his sample, he can observe the choice made, and the value actually

experienced by the agent.2 Given this sample information, an agent makes a

choice himself, and then the next agent in the queue makes his decision, until

the end of the queue is reached. Before the first agent in the sequence makes

1 The ACE model will be described in Sections 5.2.1 to 5.2.3. The pseudo-code of the model can be

found in the appendix.
2 Notice that the sample size is fixed exogenously, and we do not analyze the issue of optimal sampling

strategies. This follows the existing literature on information contagion. More in particular, the

functional specification and the number of observations sampled, six, are based on the experimental

study by Narduzzo and Warglien (1996).
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his decision in a given period, we add six dummy agents. Three of these

dummies choose one item, and the other three the other item. This 50–50

seeding prevents any bias at the start of a period. The reason to do this is that

lock-in due to the choice of the very first agents would be an uninteresting

artifact.

As Figure 5.1 illustrates, in general the information sampled will be far from

conclusive to determine which of the two items has the greatest expected value.

For example, a utility level of 0.60 experienced by a specific agent in a sample

could have been generated by an item with an expected value of 0.35, but also by

an item with an expected value of 0.85. Obviously, this uncertainty matters a great

deal for an agent that needs to make such a decision. We assume that each agent

has in mind a set of simple rules of thumb to choose an item, and that the

propensity to use any of these rules may change over time as a result of an agent’s

experience in the use of these rules. Therefore, before we explain in detail the

modeling of the decision making and learning by the individual agents, we need to

clarify how the individual agents face a similar basic choice problem over and

over again.

Figure 5.1: Probability density function for the values of two items, with EV1 ¼ 0:40 and

EV2 ¼ 0:55:
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5.2.2. Choice dynamics

All individual agents face the same basic choice problem for 25,000 periods. In

every period, two new items arrive that are completely independent from all

earlier items, and all agents sequentially face a choice between them, with the

order of the agents being determined at random in every single period. The fact

that we modeled the sampling in a given period as random is a short-cut to take

into account that for every day-to-day decision an individual agent may have a

different relevant “neighborhood.” As we want to focus on the issue of

information contagion (analyzing the meaning of the information externality),

we do not want to impose any given, fixed structure on these neighborhoods, nor

do we want to consider the endogenous formation of neighborhood structures.

As we explained in Section 5.2.1, every item appearing is characterized by its

expected value. This expected value itself, which is unknown to the agents, is

also a random draw from a uniform distribution; this time with support from

0.25 to 0.75. Hence, the worst item that can ever appear has an expected value

of 0.25 (generating values for individual agents between 0.00 and 0.50), and the

best possible item has an expected value of 0.75 (yielding utility levels between

0.50 and 1.00). Obviously, the ranges of utility levels that can be generated by

intermediate items overlap with each other, as shown in Figure 5.1. Every

500th period, the expected values of the two items are identical (0.50). These

identical expected value cases will serve as useful benchmarks to see how

much information contagion has emerged. While we use this benchmark

every 500th period, in all other periods the expected value of the two items

will not be identical, with one of the two items being superior in a statistical

sense.

Although we have not said much about individual decision making and

learning yet, intuition might suggest that this must be a trivial problem. If we run

the model for 25,000 periods, and if in every period (apart from the benchmark

periods) one of the two items is superior, then, surely, eventually every agent

will easily discover which item is better. However, matters are slightly more

complicated. Every period, two new, unknown items appear, and each item is up

for choice only once during the entire history. Hence, the learning concerns the

general rules of behavior, and not the specific, particular items as such. The fact

that the agents learn the usefulness of general rules of behavior, and not the

value of specific items also implies that if an agent oversees a certain sample of

prior adoptions by other agents he might choose item 1, whereas he might

choose 2 if he were confronted with the same two items but a different sample of

prior adoptions.
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5.2.3. Individual decision making and learning

The individual agent’s decision making is modeled for each individual agent

separately by means of a Classifier System. Figure 5.2 presents one such stylized

Classifier System.

A Classifier System consists of a set of rules, each rule consisting of a condition

part (“if …”), and an action part (“then …”), plus to each rule attached a measure

of its strength. The Classifier System does two things. First, it decides which of the

rules will be the active rule in a given period. Hence, it checks the condition part,

and all rules satisfying the “if…” condition make a “bid” as follows: bid ¼
strengthþ 1; where 1 is white noise. The rule with the highest bid in this

“stochastic auction” wins the right to be active. Second, the Classifier System

updates the strength s of a rule that has been active, and has generated a reward

from the environment in a given period t2 1; as follows: st ¼ st21 2 c · st21 þ
c · rewardt21; where 0 , c , 1: Hence, Dst ¼ c · ðrewardt21 2 st21Þ: In other

words, as long as the reward generated by the rule in period t2 1 is greater than its

strength at t2 1; its strength will increase. As a result, the strength of each rule

converges to the weighted average of the rewards from the environment generated

by that rule.3 In the Classifier System implemented in our model, the strengths of

all rules are equal at the start.

Classifier Systems are a form of reinforcement learning. Reinforcement

learning is related to multi-armed bandit problems, and is based on two principles.

First, agents try actions. Second, actions that led to better outcomes in the past are

more likely to be repeated in the future. There is a family of stochastic dynamic

models of such individual behavior in the scientific literature, for which different

backgrounds can be distinguished. The idea was first developed in the

psychological literature. See especially Hull (1943) and Bush and Mosteller

(1955), on which Cross (1983) is based. Much later, reinforcement learning was

independently reinvented twice as a machine learning approach in computer

science. See, e.g., Sutton and Barto (1998) for a survey of an approach called

reinforcement learning. The other reinforcement learning approach in computer

science is known as Classifier Systems. See Holland (1975) for early ideas on this,

or Holland et al. (1986) for a more elaborate treatment of the issue of induction in

general. In the economics literature reinforcement learning became better known

more recently through Roth and Erev (1995).

It should be stressed that the Classifier Systems are not models of agents

using only simple decision rules. Although each rule for itself in a Classifier

3 We presented this specific learning model in Kirman and Vriend (1995), see also Kirman and Vriend

(2001).
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System is a simple rule, it is the set of rules that forms the link between

actions and previous actions and outcomes, and it is not the individual

rules that matter. As is well known, this type of representation of knowledge is

not restrictive in any sense, and any program that can be written in a standard

programming language can be implemented as a Classifier System. That is,

these systems are “computationally complete” (Minsky, 1967). Hence, a

Classifier System may be thought to model the most complex and sophisticated

human decision procedures, as well as the most simple. In other words, any

decision can be modeled as if made by a Classifier System.

Table 5.1 summarizes the set of rules we actually use in our model. A more

detailed explanation of each “if… then…” rule can be found in the appendix. To

illustrate that these rules of thumb compete with each other, and that, given the six

sample observations, different rules of thumb may lead to different product

choices, consider the following example. If the choices in an agent’s sample are

three times item 1, and three times item 2, with utility levels of 0.48, 0.71, and

0.28 for item 1, and 0.41, 0.37, and 0.44 for item 2, then rule 1 (choose highest

average) would point to item 1, while rule 4 (choose highest minimum) would

lead to item 2. The relative importance of each rule of thumb in a decision maker’s

decision process depends on the payoffs generated by these rules of thumb, such

that rules that gave rise to higher payoffs are more likely to be used. As explained

above, the agents continuously update their beliefs in this respect.4 Besides

4 A more general analysis, including also the issues of creativity and innovation, would allow for new

rules of thumb to be generated (rules we perhaps could not even imagine right now). This could be

modeled with a Genetic Algorithm combined with our Classifier System.

Figure 5.2: Classifier System.
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through the white noise added to the “bids” of the Classifier System (see above),

the agents experiment through some kind of “trembling hand,” mistakenly

picking the item they did not intend to with a given small probability.

5.3. ANALYSIS OF THE MODEL

In this section we will show that the ACE model described in Section 5.2 provides

a possible explanation for information-contagious behavior. Moreover, we will

see that information-contagion is an inherently complex dynamic phenomenon. In

order to analyze the properties of our ACE model, we examine 10 runs of the

model, each with 100 agents for 25,000 periods.

From an objective point of view, in almost every period one of the two items

is superior, but knowledge is very much divided in our model. Each individual

agent has a sample of six observations, and such a sample may overlap with

the samples of some other agents. Hence, some more specific questions we

want to answer are the following: Do the agents through their interaction learn

to use rules of thumb that solves the division of knowledge problem? How do

the market outcomes look like? And do we get path-dependence and lock-in

effects?

Table 5.1: Decision rules.

Rule Choice

1 Highest average
2 Highest average (2)
3 Highest average (3)
4 Highest minimum
5 Highest minimum (2)
6 Highest minimum (3)
7 Highest maximum
8 Highest maximum (2)
9 Highest maximum (3)
10 Majority
11 Majority (3)
12 Majority (5)
13 Follow last
14 Follow last (2)
15 Follow last (3)
16 Random
17–31 Opposite choice of rules 1–15
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5.3.1. Path-dependence and lock-in

We first focus on the benchmark periods in which the expected value of both items

is 0.50, i.e., the periods that are a multiple of 500. We want to know how the

market shares of the two items develop as we go down the sequence of 100 agents

in a given period, and in particular we want know how this development changes

over time as the agents learn which rules of thumb to use. Figure 5.3 shows some

examples of a typical run: the development of the cumulative market share of one

of the items in the periods 500, 10,000, and 20,000.5 Each sequence starts with a

market share of 0.50 because of the initial choices by the six dummies. The market

share of the other item is just one minus the share of the item shown, i.e., the curve

shown mirrored in the straight line at 0.50.

If there were no information externalities at all, every choice would be an

independent decision, with each of the two items being equally likely to be chosen

(as in these benchmark periods the two items were equally good), and the

development of the market shares would more or less zigzag around a 0.50 market

share. As we see in Figure 5.3(a), the cumulative market share curve for period 500

looks as if there is no information externality. This is because the agents have had

only little opportunity to learn, and they basically behave like “zero intelligence”

agents (Gode and Sunder, 1993), choosing behavioral rules at random. As a result,

no information contagion occurs. If we showed this curve in period 500 for different

runs, or other benchmark periods towards the beginning of a run, we would get

a series of different zigzag curves that all stay close to the 0.50 market share line.6

The market share curve shown in Figure 5.3(b) for period 10,000 looks very

different. Just as in period 500, we see some deviations from a 0.50 share early on,

but unlike in period 500, this time we see that the item that gets a smaller market

share early on continues to lose ground. Eventually, its share stabilizes at a level of

about 16%. The rather smooth curve for period 20,000 shows the positive feedback

effect even stronger. Right from the beginning of this period, one item (the one not

shown) increases its market share continually until it dominates the market

completely. Although the two items are identical in this period, the information

contagion leads to lock-in. Which of the two items gets to dominate is basically

random, due to small historical events. That is, it is path-dependent.

Figure 5.4 looks at the same phenomenon, the emergence of information

contagion, focusing on the individual choices of the 100 agents as such in the same

5 We will see below that these examples have been carefully selected in a certain sense.
6 The fact that the zigzag pattern appears to become smoother towards the end of the sequence is due to

the fact that each additional decision maker carries less weight in the cumulative market share as we

move down the line of 100 agents.
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periods as shown in Figure 5.3. In Figure 5.4(a) we see an almost random

sequence of choices in period 500, shifting from one item to the other item all the

time, and there is very little order, if any. In Figure 5.4(b), showing the same for

period 10,000, and in Figure 5.4(c) for period 20,000, we see an increasingly

orderly pattern. In Figure 5.4(c), although the two items are identical, item 1 does

not seem very fashionable, with agent after agent choosing item 2, and only an

occasional deviation from the norm.

As Figures 5.3 and 5.4 show, the decentralized interaction of the individual

agents leading to a situation in which almost all agents choosing the same item

emerged as a spontaneous order, where by “order” we mean here that knowledge

of a sequence of individual choices would allow us to make a more than educated

guess about the next individual choice.

The market share curves and the individual choice curves shown suggest a

simple story. As time goes on, the more the choice behavior of the population

becomes self-organized the more the information contagion develops, and as a

result the development of market shares increasingly gets a particular pattern, with

rather smooth curves concentrated in a relatively small space with either a very

Figure 5.3: (a) Cumulative market share, period 500 (run #8). (b) Cumulative market share, period

10,000 (run #8). (c) Cumulative market share, period 20,000 (run #8).
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Figure 5.4: (a) Individual choices, period 500 (run #8). (b) Individual choices, period 10,000 (run #8).

(c) Individual choices, period 20,000 (run #8).
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high or a very low cumulative market share. However, as we will show in a

moment, matters are slightly more complicated. The spontaneous order emerging

turns out to be far from absolute, and the examples just shown have been carefully

selected. In every run it takes some time before the information contagion

emerges, giving rise to lock-in and path-dependence effects, but once the

population gets self-organized this turns out not to be a monotonic process at all.

Giving the curves shown in Figures 5.3 and 5.4 for different benchmark periods

would show market share curves going all over the place. Sometimes one item

almost completely dominates the market, other times we see the fashion switching

at some point from one item to the other, and sometimes this switching occurs so

frequently that we get a zigzag curve similar to the one shown for period 500.

Hence, the curves seem to drift about in all directions, and the system moves all

the time between almost complete order and almost complete disorder, but never

stays at either of these. We will explain this phenomenon in Section 5.3.2, but first

we will illustrate it by using different measures for what goes on in these markets.

Obviously, the final market share of an item is not exhaustively informative

concerning the amount of lock-in generated. One change in fashion at the middle

of the sequence would be sufficient to end up with 5050 shares. Therefore, we take

as a measure of the path-dependence in the population’s decisions the size of

the area between the cumulative market share curve (as shown in Figure 5.3)

and the straight line at 0.50, relative to the area of the rectangle defined by the axes

and the 0.50 line. The more systematically the market stays away from a 50–50

distribution, the more lock-in we have. This measure, the lock-in rate, is a number

between 0 and 1, and is shown in Figure 5.5 for the same run number 8 for

all benchmark periods, i.e., those periods that are a multiple of 500. As we see,

lock-in ranges from low values around 0.10 at the beginning, and tends to

get higher values as time goes on, up to about 0.80, but there remains a lot of

variation all the time, with lock-in regularly falling back to the low initial values.

The three benchmark periods that we used in Figures 5.3 and 5.4 are indicated

with a dot.

The same kind of picture results in each of the other runs. The only difference

being that the exact benchmark periods in which the upward or downward shifts

occur differ from run to run.7 Table 5.2 considers the second half of the span for

which we examined the model, i.e., the benchmark periods from 13,000 to 25,000.

For each of the 10 runs we compute the average, the standard deviation, the

minimum, and the maximum lock-in rate. The table shows for each of these

four variables the run with the lowest and the run with the highest values among

7 These graphs are available from the author upon request.
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the 10 runs. As we see, for each of these four statistics the run with the lowest

value and the run with the highest value are within a relatively narrow range.

Another way to measure how much lock-in into one of the two items is

present is the rate at which the choices of the agents switch from one to the

other item in the benchmark periods. If each individual decision is taken

independently, and the items are equally good, the expected switch rate is

0.50. Figure 5.6 shows the switch rates for each of the benchmark periods in

run number 8. As we see, the switch rate starts indeed around 0.50, and then

comes down as time proceeds, but just as with the lock-in rates above, this

goes with a lot of fluctuations. The switch rate regularly comes down to

Figure 5.5: Lock-in rates in benchmark periods (run #8).

Table 5.2: Lock-in rates across runs.

Out of 10 runs

Lowest Highest

Lock-in rates
Average 0.483 0.572
Standard deviation 0.182 0.265
Minimum 0.046 0.113
Maximum 0.793 0.832
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values close to 0, implying a very orderly state in which every agent chooses

the same item, but almost equally regularly the switch rate jumps back to

levels close to 0.50, the maximum disorder, as if all agents choose randomly.

Just as for the lock-in rates, qualitatively similar pictures emerge across the

10 runs.8 Table 5.3 shows the run with the lowest and the run with the highest

value for the same statistics as used in Table 5.2; the average, the standard

deviation, the minimum, and the maximum rate over the benchmark periods from

13,000 to 25,000 for a given run. As we see, for each of the four statistics the

differences across the runs are relatively minor.

5.3.2. Performance over time

In the benchmark periods analyzed in Section 5.3.1, the two items were always

identical. In those periods, any item was as good as the other item, and hence any

decision rule was as good as any other decision rule. We used those periods to see

how much information contagious behavior the agents had developed during the

periods in between the benchmark periods, periods in which the two items were

8 These graphs are available from the author upon request.

Figure 5.6: Switch rates in benchmark periods (run #8).
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generally not identical. Before we analyze the behavior of the individual agents,

we first want to see what the effects of the learning of the agents is on the overall

outcomes for the society.

Figure 5.7(a) shows the 100-period moving average of the relative frequency

with which the best of the two items is picked in each of the first 5000 periods, and

Figure 5.7(b) does the same for the periods 20,100–25,000. The three curves

drawn are based on the moving average performance curve of each of the 10 runs.

They show the upper and lower contour of these 10 curves plus the average curve.

As we see, all moving average performance curves are placed within a rather

narrow band. The relative frequency with which the superior item is chosen, i.e.,

the final cumulative market share of the superior item in a given period, is a good

measure of social efficiency. At the start, with people making almost random

choices, about 50% of the agents pick the correct item. This average frequency

increases over time, and in Figure 5.7(b) it has reached a level of about 84.2%,

without any further increase suggested by a trend. That we do not reach higher

efficiency levels is related to the fact that often the two items have an expected

performance that is extremely close. In fact, on average the expected performance

for the worst item turns out to be 0.42, and for the best item 0.58. In many periods

the difference in expected performance is close to zero.

Instead of the 100-period moving average of the performance of the 10 runs,

Figure 5.8 shows the performance for every single period of run number 8, and

reveals that underlying these moving average performances something interesting

is happening.9 Notice that every 500 periods the items are equally good, and

9 The graphs may seem to present multiple observations for each single period. This false impression is

solely due to the fact that 5000 observation points are crammed into a small space. The graphs for the

other nine runs are available from the author upon request. They show a very similar picture. In Figure

5.7, we showed already that the average performance was very similar across runs. The same applies to

the spread of the period-to-period performance. If we take, for example, the standard deviation of this

performance measure for the periods 20,001–25,000 in a given run, we see that this ranges from 0.230

to 0.249 across the 10 runs.

Table 5.3: Switch rates across runs.

Out of 10 runs

Lowest Highest

Switch rates
Average 0.213 0.312
Standard deviation 0.118 0.164
Minimum 0.000 0.060
Maximum 0.470 0.560
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hence everybody makes the right choice. More interesting is the observation that

while the (moving) average performance goes up, the spread increases as well. In

the beginning, in every period about 50% of the agents choose the correct item.

Sometimes this is a little bit lower, and sometimes a little bit higher, but never

very much so. For some time performances never exceed the 35–70% band. But

as times goes on, and average performance goes up, occasionally periods occur in

which only 30% of the agents pick the superior item. Later on there are periods

Figure 5.7: (a) Moving average performance, periods 100–5000 (all runs). (b) Moving average

performance, periods 20,100–25,000 (all runs).
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Figure 5.8: (a) Performance, periods 1–5000 (run #8). (b) Performance, periods 20,001–25,000

(run #8).
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with just 15% choosing correctly, and eventually, (after about 5000 periods) it

sometimes even happens that almost nobody recognizes which is the best item. All

the time, though, the moving average of the performance shows an upward trend.

As noticed above, in part the spread in performance is due to the fact that on

average the expected performances of the two items is rather close, occasionally

leading many people to the wrong choice. But the frequency with which the

expected performances are close to each other (making mistakes likely) does not

change over time. Hence, the change in spread over time that we observe is due to

the adaptive behavior of the agents. As they learn, they improve their average

performance, but occasionally this leads to disasters, with almost everybody

choosing the wrong item.

The big question to be answered, then, is: what is it in the behavior of the

individual agents that has adapted in such a way that information contagion

emerges? And how is this related to the reported effects of increased average

performance and increased intensity of social disasters? Basically, the model

implies two things for the behavior of the individual agents that need to be

distinguished. First, the agents learn to use better rules as such, i.e., the rules

that lead to higher utility levels because they are better at recognizing the

superior item on the basis of six sample observations. The dynamics are in

part the result of this evolution of the rules being used. Second, the agents

learn to use rules that aggregate information. The possibility to aggregate

information is due to the presence of an information externality. As an agent

chooses an item, it gives the choosing agent a certain utility, but at the same

time, there is also an externality, as the choice of the given agent is added to

the information pool on which the choices of future agents will be based.

Some rules take advantage of this externality by aggregating information,

while others do not.

For example, consider the “highest average” rule. This rule does not aggregate

information. It bases its choice on the six observations sampled, i.e., on the items

chosen and the payoffs actually generated for those six agents. It is not sensitive to

how many people in the sample of six had chosen one item or the other. That is,

the choice made by a non-aggregating rule is not affected by the information

samples used by each of the six people in an agent’s own sample. In other words,

an agent using the highest average rule is not bothered by explaining why the

agents in his sample had made their choices.

Now, consider the rule that tells an agent to follow the choice of the majority in

his sample. This rule does not consider the actual payoffs generated for the six

agents in the sample. But if each of the six agents in the sample had considered the

payoffs in their samples of six (e.g., following the highest average rule), then the

“majority” rule implicitly considers six times six or 36 sample payoffs instead of
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only six. That is, the majority rule aggregates the information available to each of

the agents in the sample.

More in general, the information aggregating rules are those rules that are

affected by the choices of the other agents. That is, they are sensitive to how

many people in an agent’s sample of six had chosen each of the two items.

Obviously, because of the information externality, the two forms of learning

(i.e., the learning to use better rules as such, and the learning to use rules that

aggregate information) are closely related. As one agent learns and changes

his behavior, other agents are learning as well, partly in response to this. The

value of aggregated information depends on the quality of the choices made

by the other agents. Hence, this is a coevolutionary process. The rules that an

agent uses evolve in response to the evolution of other agents’ rules.

To analyze the relevance of these two forms of learning we did the following

experiment that excludes the information externality. The basic choice situation in

this variant of the model is the same as above. But this time every agent, when

making his choice, does not observe what other agents did before him, nor the

payoffs they realized. Instead, when an agent’s turn comes, he can six times

randomly choose and try an item himself, and observe the payoffs.10 Hence, the

only difference with the standard model is that there is no interaction between the

agents, hence no information externality, and thus no possibility of information

aggregation.

Although there is no information externality in this variant, the agents still learn

which rules are more likely to pick the superior item on the basis of a sample of six

observations. Figure 5.9(a) shows the 100-period moving average of the relative

frequency with which the best of the two items is picked in each of the first 5000

given periods, and Figure 5.9(b) does the same for the periods 20,100–25,000.

We show again the upper and lower contour of the moving average

performance curves plus the average of the 10 runs. We observe that the

performance, starting from a level of 0.50, which even random choice would

achieve, increases to a level of about 0.775. That is, the agents do learn to improve

their performance by the use of the better rules, but they stay below the average

performance in the standard version, when it reached a level of 0.842. In

other words, taking advantage of the information externality by aggregating

10 These payoffs are generated using exactly the same underlying distributions as in the base

model, including the noise term added to each observation. This implies that the stochastic

element of the payoffs can no longer be interpreted as idiosyncratic taste or skill factors, but

should be seen as measurement errors in this variant. Notice also that to follow the previous setup

closely, we do not consider the issue of what the optimal sampling strategy would be.
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Figure 5.9: (a) Moving average performance, periods 100–5000 (variant; all runs). (b) Moving

average performance, periods 20,100–25,000 (variant; all runs).
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knowledge, the agents succeeded in winning another 8.6% in performance in the

standard version.11

Figure 5.10 shows the performance in every single period of a given run of the

variant. As we see, the performance tends to rise, but, apart from the benchmark

periods, it almost never gets close to 1, and there are also no disasters. In the most

unfortunate periods, it is still about 40% of the agents that succeed in choosing the

superior item.12

This analysis illustrates at the same time the advantage and the limits of

information aggregation, as occurring in the standard version. By aggregation, the

agents succeed in reaching very high performance levels in many periods, higher

than they could ever achieve on their own. But when agents aggregate information

(e.g., following the majority rule), an agent wastes some information as well, since

he does not use the information concerning the actual payoffs realized by the six

people in his sample. As we explained above, if a single agent aggregates

information he implicitly uses six times six, i.e., 36 observations instead of only

the six in his own sample. But if each of the six agents in his sample would also be

aggregating information, they would each implicitly use 36 observations, and

hence our single agent would be using six times 36, i.e., 216 observations. Hence,

the more agents use aggregating rules, the more aggregation of knowledge occurs.

But, when too many agents aggregate information, too many agents waste their

own information. At some point a tiny little bit of knowledge starts getting

aggregated ad absurdum. In some sense, the agents start aggregating ignorance

instead of knowledge.

Figure 5.11 shows the upper and lower contour of the cumulative market shares

for all benchmark periods of all 10 runs. As we see, the cumulative market shares

stay around 0.50. At the end of each given period, each item has a cumulative

market share between 0.358 and 0.679. There is no lock-in or path-dependence.

This was to be expected, because in the benchmark periods the two items are

identical, and all agents make their choice independently. Since there is no

information externality, we cannot get path-dependent lock-in.

11 If we compute for each single run the average performance over the periods 20,001–25,000, we

see that this ranges from 0.835 to 0.850 in the standard version of the model, and from 0.770 to

0.779 in the variant. In other words, even in the single worst run of the standard model average

performance is 7.2% higher than in the best run of the variant.
12 The graphs for the other nine runs are available from the author upon request. They show a

very similar picture. Besides a similar average performance (see Figure 5.9), the standard

deviation of this performance measure for the periods 20,001–25,000 in a given run is also very

similar across the 10 runs. It ranges from 0.139 to 0.142.
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Figure 5.10: (a) Performance, periods 1–5000 (variant; run #1). (b) Performance, periods 20,001–

25,000 (variant; run #1).
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5.3.3. The individual decision rules

One of the advantages of an ACE approach is that we, as modelers, know for each

single period which of the two items is superior. Hence, for each single decision to

be made by any of the agents, given his sample of six observations, we can check

for each of the 31 rules whether it would have picked the superior item. Obviously,

the individual agents do not obtain this information. They only try one rule of

behavior in every period, and observe the payoffs they generate doing so.

Figure 5.12 shows the time series of the relative frequencies that a given rule

would have picked the superior item, averaged over the 10 runs.13 That is, the

graph shows the relative frequency that a given rule belongs to an agent’s

best-reply correspondence.

As we see, picking an item at random (rule “random”) leads to the superior item

in about 50% of the cases, and this remains constant over time. Looking at just one

other agent, and imitating whatever he picked (rule “last”) starts close to 50%, but

as other agents learn to make better choices, the performance of this rule increases

Figure 5.11: Cumulative market shares, all benchmark periods (variant; all runs).

13 These frequencies are normalized for eligibility, since, as we explained above, in some cases the

“if …” part of a rule is not satisfied. Each observation concerns one cycle of 500 periods (from one

benchmark period to the next). For presentational reasons we only show the rules 1, 4, 7, 10, 13, and 16

(see Table 5.1).
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considerably and gets close to the rule that chooses the highest average in the

sample (rule “average”). This increase in performance applies even much more to

the rule that says to follow the majority of the six observations sampled (rule

majority). This rule, which does not use any of the available information

concerning the utility levels obtained by the six agents sampled, at some point

starts beating all other rules.14 Two other rules stand out. The rule that chooses the

highest minimum (rule “minimum”) deteriorates over time. The explanation for

this is that, implicitly, it does the opposite of information aggregation. It favors the

item that is the least often chosen, because the more an item is chosen, the more

likely it is that some observation will be in the lower part of the distribution, and

hence be the lowest minimum in the sample. Exactly the opposite applies to the

rule that chooses the highest maximum (rule “maximum”). The more an item is

chosen, the more likely it is it will provide the highest maximum in the sample.

The important thing to notice here is that the degree to which a given rule is

objectively good changes over time as a result of the other agents changing the

rules they use. To show how the effect of the information externality makes it a

coevolutionary process, i.e., the agents adapting to each others’ adaptation to each

other…, Figure 5.13 presents the frequencies (averaged over the 10 runs) with

14 Arthur and Lane (1991) argue that lock-in resulting from the simple imitation of other people is not

interesting, but what makes it interesting here is that we contribute to an explanation of the

phenomenon of imitative behavior itself.

Figure 5.12: Specific rules as best-replies (all runs).
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which the individual rules form part of an agent’s best-response correspondence
in the variant in which there are no information externalities. As we see, these
frequencies remain constant over time, apart from some random noise. The
only thing the agents need to learn is to figure out which of these rules are most
often good in a given situation. Obviously, for different situations different
rules might be best. But which rule is good for a given sample configuration
does not change over time. This is very much unlike Figure 5.12, where the
learning of the agents influences in turn what the other agents have to learn.

To conclude our analysis of the model, could it be that the famous QWERTY
lock-in has less to do with network externalities and other real payoff matters
than with information contagion? After all, with the current technology, and
most people using a personal computer, switching a keyboard layout is
relatively easy. It is true that it requires a little bit of personal investment (time
and effort to change the layout itself, plus some re-training), but if individual
agents knew an alternative keyboard were superior, that would be no obstacle.
The only problem seems that individual agents do not know whether it is worth
choosing an alternative keyboard layout, and generating own sample
observations by trying various different keyboard layouts is rather costly.
Hence, an individual agent needs to base his decision on the choices made by
other people, and as our ACE model demonstrates, it might be that it is
the emergence of information- contagious behavior that leads to a QWERTY
lock-in.

Figure 5.13: Specific rules as best-replies (variant; all runs).
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5.4. SOME RELATED LITERATURE ON INFORMATION

CONTAGION AND SOCIAL LEARNING

Alongside increasing returns (Arthur, 1989), network externalities (Katz and

Shapiro, 1985, 1980), information cascades (Bikhchandani et al., 1992), and

herding behavior (Banerjee, 1992), information contagion (Arthur and Lane,

1991) has been presented in the literature as an explanation for particular patterns

of macrobehavior (for example, path-dependence and lock-in effects) that may

seem at odds with the underlying micromotives. But whereas these other

explanations have been shown to have a proper microfoundation (either related to

changing productivity or changing preferences, or to Bayesian updating in the face

of uncertainty), information contagion has remained a phenomenon that occurs

only when certain ad hoc rules of thumb for individual behavior are assumed.15

Making use of the theory of generalized Polya urn schemes (Hill et al., 1980),

Arthur and Lane (1991) show that in a population of naive Bayesian optimizers

information contagion may drive the market to stable (but not complete)

domination by a single product. This is caused by the fact that the more a product

has been chosen already by others, themore likely it is to be in an individual agent’s

sample on which he has to base his choice, and hence the more precise his

information concerning the true quality of the product. Dosi et al. (1994) show

similar results for a given rule of thumb that is more directly imitative.

Narduzzo andWarglien (1996) carried out two experiments with human subjects

to test the empirical relevance of this theoretical possibility of information

contagion. Between 50 and 170 experimental subjects were instructed that they

faced the choice between two products of which the objective value is uncertain,

while the same product can generate a different value for different subjects. The

players made their choice sequentially, and each player received information

concerning the choice and value generated of a random sample of six subjects that

had already made their choice at that point. In fact, the values generated by the two

products had the same uniform distribution on [0.25, 0.75] and in another treatment

these values were drawn for both products from [0.60, 1.00]. They observed that

path-dependent dynamics emerged and that lock-in ofmarket shares occurred, with

early accidental choices giving rise to seemingly stable cumulative market shares

with the prevalence of one product over the other. Narduzzo and Warglien, then,

tried to find out which choice heuristics the players used. Therefore, they

interviewed some players after the experiment and they did some “thinking-aloud”

15 A difference between the information contagion literature on the one hand, and the literature on

information cascades and herding behavior on the other hand, is that in the latter an agent does not

observe the payoffs generated by other agents, but only their choices as such.
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protocol analysis. They found four basic choice heuristics: the mean rule (highest

average), themin rule (highestminimum), themax rule (highestmaximum), and the

popularity rule (follow majority). They observe that these rules are not necessarily

used in isolation, and that subjects may have changed their rules based on their

experience from one run to another. Also, there might be context-sensitivity, with

different samples inducing the use of different rules.

Lane and Vescovini (1996) analyzed the contagious effects of these four rules,

with the assumption that all subjects follow the same rule. They find that the

mean and the min rule never produce path-dependent behavior. The popularity

rule always generates path-dependent market shares, and the max rule only when

the products are exactly identical. Hence, three of the four rules reported by

the subjects do not generate path-dependence. So the question is, where did the

observed path-dependence come from?16 Lane and Vescovini note that

the emergence of path-dependence and information contagion is related to the

mix of rules actually used in the population, and that an important question is

how people change rules after they experience outcomes. Since learning is a

coevolutionary process (while one agent is learning all other agents are learning

simultaneously), these two points should be considered combined. That is what

we do in our model. We want to understand the process through which

information contagion emerges. Narduzzo and Warglien’s experiments are one-

shot games, but the players must have faced very many analogous decision

problems outside the laboratory. How does information contagion emerge, what

role does it play, and what are the effects (both with respect to individual players

and the society as a whole)? Where does a configuration of rules used in a

population that leads to path-dependence come from? Is it based on arbitrary,

extremely bounded rational behavior? Or is it reasonable to learn rules of

behavior that give rise to information contagion?

Our ACE model addresses these questions. ACE modeling has two advantages

relative to the experimental method followed by Narduzzo and Warglien. First,

organizing a laboratory experiment with a large number of players making their

choice sequentially is not easy, and organizing an experiment with a large number

of such periods in order to study the learning dynamics seems a very arduous task.

Second, using experimental data to characterize individual behavior faces the

problem that the rules of thumb used by the players are not directly observable,

while subjects’ reports are not very reliable. One reason for this might be that each

16 Of course, it could be the case that the subjects in the Narduzzo and Warglien (1996) experiments

were actually naive Bayesian optimizers as outlined in Arthur and Lane (1991), but this seems unlikely.

For one thing the Arthur and Lane model assumes that the subjects know the parameters of the

underlying distributions, which was not the case in the experiments.
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rule he exactly uses at a certain moment. Hence, questionnaires tend to be rather

inconclusive. Therefore, this seems an excellent case to use an ACE model. Not

only does this allow us to analyze very long run dynamics, but we can also do an

explicit analysis of the rules of thumb actually used.

The basic choice situation in our ACE model as described in Section 5.2.1

follows closely the one used in the information contagion papers discussed in this

section. The main difference is the following. In the information contagion

experiments by Narduzzo and Warglien (1996), the expected values of the two

items are actually identical, although this was not known to the subjects. In our

ACE model, the two expected values are generally different in every period (apart

from the benchmark periods). The reason to use these different expected values in

all periods not being a multiple of 500 is that if the two products would have an

identical performance distribution in every period, then there would be no relation

between the rules of thumb used and the payoffs generated. That is, since on

average any of the two items is equally good, any rule of thumb is as good as any

other rule, and hence there would be no selection pressure at all. Therefore, in our

model in each cycle of 500 periods we have 499 periods in which the average

performance of the two products is different, in order to give selection some bite,

and then we check in the 500th period what the selection process has achieved by

using the two products with identical performance as a benchmark case.

Ellison and Fudenberg (1993) consider a closely related problem, i.e., the use of

rules of thumb in a situation where agents need to choose between two items with

unknown value, and where social learning takes place. They assume that players

use exogenously specified, simple rules of thumb. One justification they give for

this is that they do not consider fully Bayesian learning a realistic assumption,

because it requires calculations that may be too complicated. In each period, some

fraction of the players have the opportunity to revise their choices. They only

observe last period’s payoffs and choices of all agents. They present some simple

and some more complicated rules which are all some form of popularity weighted

choice of the highest average, and they derive the optimal weight of the popularity

for some of these rules. However, since they assume rules of thumb that are

exogenously given, an important question is whether it is likely that these optimal

weights will actually be used by the agents. In support of a positive answer,

Ellison and Fudenberg note that they showed in a working paper that all agents

using the optimal weights constitutes an equilibrium, but they stress that important

extensions of their analysis are needed. The reason for this is that the precise

specification of these rules supposes more sophistication of the agents than they

find themselves compelling. Therefore, conjecturing that the optimal popularity

weighing might emerge from an adaptive process, Ellison and Fudenberg
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explicitly ask for a complementary study. As they put it, “it would be interesting to

complement these results with an analysis of a dynamic process by which players

adjust their rules of thumb along with their choice of technology” (p. 638).

Such an analysis would imply an application of our approach to the Arthur and

Lane (1991) model to the Ellison and Fudenberg (1993)model. Table 5.4 illustrates

this. Starting point is the Arthur and Lane (1991) model, in which the agents face

a single binary once-and-for-all choice, while their choice behavior is static, i.e.,

there is no learning. We, then, distinguish two types of dynamics. Our ACE model

introduces dynamic choice behavior in a series of binary once-and-for-all choices.

Ellison and Fudenberg (1993), on the other hand, study a single binary choice

problem with static choice behavior while allowing for period-to-period revision

dynamics. The model that Ellison and Fudenberg solicit would be one in which our

dynamic choice behavior is applied to a series of binary choices-with-revision.

5.5. DISCUSSION

We presented a model to explain the phenomenon of information contagion in a

study in which individuals repeatedly have to make a choice between two

previously unknown items while they can rely only on some information from

previous adopters. We showed how one could provide a microfoundation for

information contagion, based on a simple model of adaptive behavior with agents

trying to do the best they can, and without needing to assume ad hoc rules of

thumb. We also showed that information contagion, unlike increasing returns to

scale, network externalities, information cascades, and herding behavior, is an

inherently complex phenomenon.

Our ACE model exhibits self-organization, and the emergence of spontaneous

orders in which typically most agents choose the same, superior item. This results

from the emergence of information contagious behavior of the individual agents.

Information contagion is a way to aggregate distributed knowledge in society,

allowing the individuals and the society to achieve higher performance levels.

This comes together with path-dependent lock-in effects, but in some sense, the

Table 5.4: Overview of models.

(Series of ) once-and-for-all
choice(s)

(Series of ) choice(s)-
with-revision

Static choice
behavior (no learning)

Arthur and Lane (1991) Ellison and Fudenberg (1993)

Dynamic choice
behavior (learning)

Our ACE model ………
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remarkable thing is not so much the emergence of these effects, but the fact that
this is related to a high average performance. The model explains this through a
coevolutionary process in which the rules of behavior used by the individual
agents evolve simultaneously. Notice that models based on fixed rules of thumb
would not work. For example, in our model the information aggregation, and in
particular the rule to follow the majority emerge. If we specify a priori that
the individual agents follow the majority rule then we would stay at a performance
level of 0.50. In addition, when the majority rule emerges as a good rule, this does
not imply that everybody should follow it. If they did, then the performance would
fall back again to 0.50. Hence, what matters is also the precise configuration of
rules used in the population. The continuously changing configurations that
emerge, lead to both a high performance level and information contagion with
path-dependent lock-in. But it turns out that this is not a simple monotonic process
from disorder to order until the solution has been reached, with a happy ending.
Instead, the system continually moves back and forth between order and disorder.
That is, the self-organization is a continuing, ongoing story, in which the emerging
order unravels time and again.

The emerging spontaneous order is beneficial, that is, on average. But along with
the improved average performance we also see an increase in both the number and
degree of disasters. This is related to the tension between generating knowledge and
aggregating knowledge. If enough knowledge is generated by the individual agents,
aggregation leads to good outcomes, but if everybody would merely aggregate
repeatedly a little bit of knowledge, this might lead occasionally to very bad
outcomes for the society. In fact, this keeps the self-organizing process from being a
monotonic one. If it were monotonic, we would get stuck with only disasters.

Our ACE model shows that it is not simple to argue whether information
contagion as such is beneficial or not. Pointing to occasional disasters
(QWERTY?, VHS?) is not sufficient to argue that it is damaging. It is not even
the case that occasional disasters are just unlucky draws of a given stochastic
mechanism. In some sense, the disasters and successes are flip-sides of the same
dynamic process, as the bad outcomes are essential to generate the successes. It
might be that, although the outcomes are not optimal in each and every single
period from a static point of view, this is the best that is dynamically achievable in
a decentralized setting (see also Bak (1997) for a similar argument).

APPENDIX A

Table A.1 explains each of the 31 decision rules of the Classifier System listed in
Table 5.1. Table A.2 presents the pseudo-code of our ACE model.
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Table A.1: Classifier System.

1 Highest average
If both items are present in the sample of six observations then choose the item that has the highest

average performance in the sample. Otherwise, if the condition is not satisfied, the rule is not
eligible and will be neglected.

2 Highest average (2)
If both items are present in the sample of six observations and the item with the highest average

performance occurs at least twice in the sample then choose the item that has the highest
average performance. Otherwise, neglect this rule.

3 Highest average (3)
If both items are present in the sample of six observations and the item with the highest average

performance occurs at least three times in the sample then choose the item that has the highest
average performance. Otherwise, neglect this rule.

4 Highest minimum
If both items are present in the sample of six observations then choose the item that has the highest

minimum performance in the sample. Otherwise, neglect this rule.
5 Highest minimum (2)

If both items are present in the sample of six observations and the item with the highest minimum
performance occurs at least twice in the sample then choose the item that has the highest
minimum performance. Otherwise, neglect this rule.

6 Highest minimum (3)
If both items are present in the sample of six observations and the item with the highest minimum

performance occurs at least three times in the sample then choose the item that has the highest
minimum performance. Otherwise, neglect this rule.

7 Highest maximum
If both items are present in the sample of six observations then choose the item that has the highest

maximum performance in the sample. Otherwise, neglect this rule.
8 Highest maximum (2)

If both items are present in the sample of six observations and the item with the highest maximum
performance occurs at least twice in the sample then choose the item that has the highest
maximum performance. Otherwise, neglect this rule.

9 Highest maximum (3)
If both items are present in the sample of six observations and the item with the highest maximum

performance occurs at least three times in the sample then choose the item that has the highest
maximum performance. Otherwise, neglect this rule.

10 Majority
If there is a strict majority in the sample choosing one item, then this rule follows that majority.

11 Majority (3)
If there is a strict majority in the sample choosing one item and this majority is at least three

elements greater than the minority, then this rule follows that majority.
12 Majority (5)

If there is a strict majority in the sample choosing one item and this majority is at least five
elements greater than the minority, then this rule follows that majority.

13 Follow last
This rule chooses the same item as the one in the last observation sampled.

14 Follow last (2)
If the last two observations sampled concerned the same item, then this rule chooses that item as

well.

(Continued)
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Table A.1: Continued.

15 Follow last (3)
If the last three observations sampled concerned the same item, then this rule chooses that item as

well.
16 Random

This rule randomly selects one of the items, each with equal probability.
17–31 opposite choice of 1–15

These rules operate just as the rules 1–15. However, when any of the corresponding rules 1–15
determines a choice of item 1, then the current rule selects item 2, and the other way round.

Table A.2: Pseudo-code of the model.

program CONTAGION;
begin
for all 100 players do for all 31 rules do fitness U 1.00;
for all 25,000 periods do
begin

draw expected_value_item_1 from uniform distr. with support [0.25, 0.75];
draw expected_value_item_2 from uniform distr. with support [0.25, 0.75];
if period is multiple of 500 then
begin
expected_value_item_1 U 0.50;
expected_value_item_2 U 0.50;

end;
put all 100 players in random order;
create six dummy observations (either 121212 or 212121 with corresponding values);
for all 100 players do
begin
sample six observations;
for all 31 rules do
begin
check conditional part;
if condition satisfied then bid U fitness þ 1, where 1 . N(0, 0.025);

end;
determine highest bidding rule;
pick item implied by that rule;
with probability 0.025 pick instead item not intended;
draw actual value of item chosen from uniform distr. with support
[expected_value - 0.25, expected_value þ 0.25];

with winning rule do fitness U 0.975 * fitness þ 0.025 * value_item;
end;

end;
end.
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